00001
00022 #include "avcodec.h"
00023 #include "bitstream.h"
00024 #include "dsputil.h"
00025 #include "lpc.h"
00026
00027 #define DEFAULT_FRAME_SIZE 4096
00028 #define DEFAULT_SAMPLE_SIZE 16
00029 #define MAX_CHANNELS 8
00030 #define ALAC_EXTRADATA_SIZE 36
00031 #define ALAC_FRAME_HEADER_SIZE 55
00032 #define ALAC_FRAME_FOOTER_SIZE 3
00033
00034 #define ALAC_ESCAPE_CODE 0x1FF
00035 #define ALAC_MAX_LPC_ORDER 30
00036 #define DEFAULT_MAX_PRED_ORDER 6
00037 #define DEFAULT_MIN_PRED_ORDER 4
00038 #define ALAC_MAX_LPC_PRECISION 9
00039 #define ALAC_MAX_LPC_SHIFT 9
00040
00041 #define ALAC_CHMODE_LEFT_RIGHT 0
00042 #define ALAC_CHMODE_LEFT_SIDE 1
00043 #define ALAC_CHMODE_RIGHT_SIDE 2
00044 #define ALAC_CHMODE_MID_SIDE 3
00045
00046 typedef struct RiceContext {
00047 int history_mult;
00048 int initial_history;
00049 int k_modifier;
00050 int rice_modifier;
00051 } RiceContext;
00052
00053 typedef struct LPCContext {
00054 int lpc_order;
00055 int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
00056 int lpc_quant;
00057 } LPCContext;
00058
00059 typedef struct AlacEncodeContext {
00060 int compression_level;
00061 int min_prediction_order;
00062 int max_prediction_order;
00063 int max_coded_frame_size;
00064 int write_sample_size;
00065 int32_t sample_buf[MAX_CHANNELS][DEFAULT_FRAME_SIZE];
00066 int32_t predictor_buf[DEFAULT_FRAME_SIZE];
00067 int interlacing_shift;
00068 int interlacing_leftweight;
00069 PutBitContext pbctx;
00070 RiceContext rc;
00071 LPCContext lpc[MAX_CHANNELS];
00072 DSPContext dspctx;
00073 AVCodecContext *avctx;
00074 } AlacEncodeContext;
00075
00076
00077 static void init_sample_buffers(AlacEncodeContext *s, int16_t *input_samples)
00078 {
00079 int ch, i;
00080
00081 for(ch=0;ch<s->avctx->channels;ch++) {
00082 int16_t *sptr = input_samples + ch;
00083 for(i=0;i<s->avctx->frame_size;i++) {
00084 s->sample_buf[ch][i] = *sptr;
00085 sptr += s->avctx->channels;
00086 }
00087 }
00088 }
00089
00090 static void encode_scalar(AlacEncodeContext *s, int x, int k, int write_sample_size)
00091 {
00092 int divisor, q, r;
00093
00094 k = FFMIN(k, s->rc.k_modifier);
00095 divisor = (1<<k) - 1;
00096 q = x / divisor;
00097 r = x % divisor;
00098
00099 if(q > 8) {
00100
00101 put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
00102 put_bits(&s->pbctx, write_sample_size, x);
00103 } else {
00104 if(q)
00105 put_bits(&s->pbctx, q, (1<<q) - 1);
00106 put_bits(&s->pbctx, 1, 0);
00107
00108 if(k != 1) {
00109 if(r > 0)
00110 put_bits(&s->pbctx, k, r+1);
00111 else
00112 put_bits(&s->pbctx, k-1, 0);
00113 }
00114 }
00115 }
00116
00117 static void write_frame_header(AlacEncodeContext *s, int is_verbatim)
00118 {
00119 put_bits(&s->pbctx, 3, s->avctx->channels-1);
00120 put_bits(&s->pbctx, 16, 0);
00121 put_bits(&s->pbctx, 1, 1);
00122 put_bits(&s->pbctx, 2, 0);
00123 put_bits(&s->pbctx, 1, is_verbatim);
00124 put_bits(&s->pbctx, 32, s->avctx->frame_size);
00125 }
00126
00127 static void calc_predictor_params(AlacEncodeContext *s, int ch)
00128 {
00129 int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
00130 int shift[MAX_LPC_ORDER];
00131 int opt_order;
00132
00133 opt_order = ff_lpc_calc_coefs(&s->dspctx, s->sample_buf[ch], s->avctx->frame_size, s->min_prediction_order, s->max_prediction_order,
00134 ALAC_MAX_LPC_PRECISION, coefs, shift, 1, ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
00135
00136 s->lpc[ch].lpc_order = opt_order;
00137 s->lpc[ch].lpc_quant = shift[opt_order-1];
00138 memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
00139 }
00140
00141 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
00142 {
00143 int i, best;
00144 int32_t lt, rt;
00145 uint64_t sum[4];
00146 uint64_t score[4];
00147
00148
00149 sum[0] = sum[1] = sum[2] = sum[3] = 0;
00150 for(i=2; i<n; i++) {
00151 lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
00152 rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
00153 sum[2] += FFABS((lt + rt) >> 1);
00154 sum[3] += FFABS(lt - rt);
00155 sum[0] += FFABS(lt);
00156 sum[1] += FFABS(rt);
00157 }
00158
00159
00160 score[0] = sum[0] + sum[1];
00161 score[1] = sum[0] + sum[3];
00162 score[2] = sum[1] + sum[3];
00163 score[3] = sum[2] + sum[3];
00164
00165
00166 best = 0;
00167 for(i=1; i<4; i++) {
00168 if(score[i] < score[best]) {
00169 best = i;
00170 }
00171 }
00172 return best;
00173 }
00174
00175 static void alac_stereo_decorrelation(AlacEncodeContext *s)
00176 {
00177 int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
00178 int i, mode, n = s->avctx->frame_size;
00179 int32_t tmp;
00180
00181 mode = estimate_stereo_mode(left, right, n);
00182
00183 switch(mode)
00184 {
00185 case ALAC_CHMODE_LEFT_RIGHT:
00186 s->interlacing_leftweight = 0;
00187 s->interlacing_shift = 0;
00188 break;
00189
00190 case ALAC_CHMODE_LEFT_SIDE:
00191 for(i=0; i<n; i++) {
00192 right[i] = left[i] - right[i];
00193 }
00194 s->interlacing_leftweight = 1;
00195 s->interlacing_shift = 0;
00196 break;
00197
00198 case ALAC_CHMODE_RIGHT_SIDE:
00199 for(i=0; i<n; i++) {
00200 tmp = right[i];
00201 right[i] = left[i] - right[i];
00202 left[i] = tmp + (right[i] >> 31);
00203 }
00204 s->interlacing_leftweight = 1;
00205 s->interlacing_shift = 31;
00206 break;
00207
00208 default:
00209 for(i=0; i<n; i++) {
00210 tmp = left[i];
00211 left[i] = (tmp + right[i]) >> 1;
00212 right[i] = tmp - right[i];
00213 }
00214 s->interlacing_leftweight = 1;
00215 s->interlacing_shift = 1;
00216 break;
00217 }
00218 }
00219
00220 static void alac_linear_predictor(AlacEncodeContext *s, int ch)
00221 {
00222 int i;
00223 LPCContext lpc = s->lpc[ch];
00224
00225 if(lpc.lpc_order == 31) {
00226 s->predictor_buf[0] = s->sample_buf[ch][0];
00227
00228 for(i=1; i<s->avctx->frame_size; i++)
00229 s->predictor_buf[i] = s->sample_buf[ch][i] - s->sample_buf[ch][i-1];
00230
00231 return;
00232 }
00233
00234
00235
00236 if(lpc.lpc_order > 0) {
00237 int32_t *samples = s->sample_buf[ch];
00238 int32_t *residual = s->predictor_buf;
00239
00240
00241 residual[0] = samples[0];
00242 for(i=1;i<=lpc.lpc_order;i++)
00243 residual[i] = samples[i] - samples[i-1];
00244
00245
00246 for(i = lpc.lpc_order + 1; i < s->avctx->frame_size; i++) {
00247 int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
00248
00249 for (j = 0; j < lpc.lpc_order; j++) {
00250 sum += (samples[lpc.lpc_order-j] - samples[0]) *
00251 lpc.lpc_coeff[j];
00252 }
00253
00254 sum >>= lpc.lpc_quant;
00255 sum += samples[0];
00256 residual[i] = (samples[lpc.lpc_order+1] - sum) << (32 - s->write_sample_size) >>
00257 (32 - s->write_sample_size);
00258 res_val = residual[i];
00259
00260 if(res_val) {
00261 int index = lpc.lpc_order - 1;
00262 int neg = (res_val < 0);
00263
00264 while(index >= 0 && (neg ? (res_val < 0):(res_val > 0))) {
00265 int val = samples[0] - samples[lpc.lpc_order - index];
00266 int sign = (val ? FFSIGN(val) : 0);
00267
00268 if(neg)
00269 sign*=-1;
00270
00271 lpc.lpc_coeff[index] -= sign;
00272 val *= sign;
00273 res_val -= ((val >> lpc.lpc_quant) *
00274 (lpc.lpc_order - index));
00275 index--;
00276 }
00277 }
00278 samples++;
00279 }
00280 }
00281 }
00282
00283 static void alac_entropy_coder(AlacEncodeContext *s)
00284 {
00285 unsigned int history = s->rc.initial_history;
00286 int sign_modifier = 0, i, k;
00287 int32_t *samples = s->predictor_buf;
00288
00289 for(i=0;i < s->avctx->frame_size;) {
00290 int x;
00291
00292 k = av_log2((history >> 9) + 3);
00293
00294 x = -2*(*samples)-1;
00295 x ^= (x>>31);
00296
00297 samples++;
00298 i++;
00299
00300 encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
00301
00302 history += x * s->rc.history_mult
00303 - ((history * s->rc.history_mult) >> 9);
00304
00305 sign_modifier = 0;
00306 if(x > 0xFFFF)
00307 history = 0xFFFF;
00308
00309 if((history < 128) && (i < s->avctx->frame_size)) {
00310 unsigned int block_size = 0;
00311
00312 k = 7 - av_log2(history) + ((history + 16) >> 6);
00313
00314 while((*samples == 0) && (i < s->avctx->frame_size)) {
00315 samples++;
00316 i++;
00317 block_size++;
00318 }
00319 encode_scalar(s, block_size, k, 16);
00320
00321 sign_modifier = (block_size <= 0xFFFF);
00322
00323 history = 0;
00324 }
00325
00326 }
00327 }
00328
00329 static void write_compressed_frame(AlacEncodeContext *s)
00330 {
00331 int i, j;
00332
00333
00334 if(s->avctx->channels == 2)
00335 alac_stereo_decorrelation(s);
00336 put_bits(&s->pbctx, 8, s->interlacing_shift);
00337 put_bits(&s->pbctx, 8, s->interlacing_leftweight);
00338
00339 for(i=0;i<s->avctx->channels;i++) {
00340
00341 calc_predictor_params(s, i);
00342
00343 put_bits(&s->pbctx, 4, 0);
00344 put_bits(&s->pbctx, 4, s->lpc[i].lpc_quant);
00345
00346 put_bits(&s->pbctx, 3, s->rc.rice_modifier);
00347 put_bits(&s->pbctx, 5, s->lpc[i].lpc_order);
00348
00349 for(j=0;j<s->lpc[i].lpc_order;j++) {
00350 put_sbits(&s->pbctx, 16, s->lpc[i].lpc_coeff[j]);
00351 }
00352 }
00353
00354
00355
00356 for(i=0;i<s->avctx->channels;i++) {
00357 alac_linear_predictor(s, i);
00358 alac_entropy_coder(s);
00359 }
00360 }
00361
00362 static av_cold int alac_encode_init(AVCodecContext *avctx)
00363 {
00364 AlacEncodeContext *s = avctx->priv_data;
00365 uint8_t *alac_extradata = av_mallocz(ALAC_EXTRADATA_SIZE+1);
00366
00367 avctx->frame_size = DEFAULT_FRAME_SIZE;
00368 avctx->bits_per_coded_sample = DEFAULT_SAMPLE_SIZE;
00369
00370 if(avctx->sample_fmt != SAMPLE_FMT_S16) {
00371 av_log(avctx, AV_LOG_ERROR, "only pcm_s16 input samples are supported\n");
00372 return -1;
00373 }
00374
00375
00376 if(avctx->compression_level == FF_COMPRESSION_DEFAULT)
00377 s->compression_level = 1;
00378 else
00379 s->compression_level = av_clip(avctx->compression_level, 0, 1);
00380
00381
00382 s->rc.history_mult = 40;
00383 s->rc.initial_history = 10;
00384 s->rc.k_modifier = 14;
00385 s->rc.rice_modifier = 4;
00386
00387 s->max_coded_frame_size = (ALAC_FRAME_HEADER_SIZE + ALAC_FRAME_FOOTER_SIZE +
00388 avctx->frame_size*avctx->channels*avctx->bits_per_coded_sample)>>3;
00389
00390 s->write_sample_size = avctx->bits_per_coded_sample + avctx->channels - 1;
00391
00392 AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
00393 AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
00394 AV_WB32(alac_extradata+12, avctx->frame_size);
00395 AV_WB8 (alac_extradata+17, avctx->bits_per_coded_sample);
00396 AV_WB8 (alac_extradata+21, avctx->channels);
00397 AV_WB32(alac_extradata+24, s->max_coded_frame_size);
00398 AV_WB32(alac_extradata+28, avctx->sample_rate*avctx->channels*avctx->bits_per_coded_sample);
00399 AV_WB32(alac_extradata+32, avctx->sample_rate);
00400
00401
00402 if(s->compression_level > 0) {
00403 AV_WB8(alac_extradata+18, s->rc.history_mult);
00404 AV_WB8(alac_extradata+19, s->rc.initial_history);
00405 AV_WB8(alac_extradata+20, s->rc.k_modifier);
00406 }
00407
00408 s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
00409 if(avctx->min_prediction_order >= 0) {
00410 if(avctx->min_prediction_order < MIN_LPC_ORDER ||
00411 avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
00412 av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", avctx->min_prediction_order);
00413 return -1;
00414 }
00415
00416 s->min_prediction_order = avctx->min_prediction_order;
00417 }
00418
00419 s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
00420 if(avctx->max_prediction_order >= 0) {
00421 if(avctx->max_prediction_order < MIN_LPC_ORDER ||
00422 avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
00423 av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", avctx->max_prediction_order);
00424 return -1;
00425 }
00426
00427 s->max_prediction_order = avctx->max_prediction_order;
00428 }
00429
00430 if(s->max_prediction_order < s->min_prediction_order) {
00431 av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
00432 s->min_prediction_order, s->max_prediction_order);
00433 return -1;
00434 }
00435
00436 avctx->extradata = alac_extradata;
00437 avctx->extradata_size = ALAC_EXTRADATA_SIZE;
00438
00439 avctx->coded_frame = avcodec_alloc_frame();
00440 avctx->coded_frame->key_frame = 1;
00441
00442 s->avctx = avctx;
00443 dsputil_init(&s->dspctx, avctx);
00444
00445 return 0;
00446 }
00447
00448 static int alac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
00449 int buf_size, void *data)
00450 {
00451 AlacEncodeContext *s = avctx->priv_data;
00452 PutBitContext *pb = &s->pbctx;
00453 int i, out_bytes, verbatim_flag = 0;
00454
00455 if(avctx->frame_size > DEFAULT_FRAME_SIZE) {
00456 av_log(avctx, AV_LOG_ERROR, "input frame size exceeded\n");
00457 return -1;
00458 }
00459
00460 if(buf_size < 2*s->max_coded_frame_size) {
00461 av_log(avctx, AV_LOG_ERROR, "buffer size is too small\n");
00462 return -1;
00463 }
00464
00465 verbatim:
00466 init_put_bits(pb, frame, buf_size);
00467
00468 if((s->compression_level == 0) || verbatim_flag) {
00469
00470 int16_t *samples = data;
00471 write_frame_header(s, 1);
00472 for(i=0; i<avctx->frame_size*avctx->channels; i++) {
00473 put_sbits(pb, 16, *samples++);
00474 }
00475 } else {
00476 init_sample_buffers(s, data);
00477 write_frame_header(s, 0);
00478 write_compressed_frame(s);
00479 }
00480
00481 put_bits(pb, 3, 7);
00482 flush_put_bits(pb);
00483 out_bytes = put_bits_count(pb) >> 3;
00484
00485 if(out_bytes > s->max_coded_frame_size) {
00486
00487 if(verbatim_flag || (s->compression_level == 0)) {
00488
00489 av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
00490 return -1;
00491 }
00492 verbatim_flag = 1;
00493 goto verbatim;
00494 }
00495
00496 return out_bytes;
00497 }
00498
00499 static av_cold int alac_encode_close(AVCodecContext *avctx)
00500 {
00501 av_freep(&avctx->extradata);
00502 avctx->extradata_size = 0;
00503 av_freep(&avctx->coded_frame);
00504 return 0;
00505 }
00506
00507 AVCodec alac_encoder = {
00508 "alac",
00509 CODEC_TYPE_AUDIO,
00510 CODEC_ID_ALAC,
00511 sizeof(AlacEncodeContext),
00512 alac_encode_init,
00513 alac_encode_frame,
00514 alac_encode_close,
00515 .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
00516 .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
00517 };