FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rematrix.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  *
4  * This file is part of libswresample
5  *
6  * libswresample is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * libswresample is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with libswresample; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "swresample_internal.h"
22 #include "libavutil/avassert.h"
24 
25 #define TEMPLATE_REMATRIX_FLT
26 #include "rematrix_template.c"
27 #undef TEMPLATE_REMATRIX_FLT
28 
29 #define TEMPLATE_REMATRIX_DBL
30 #include "rematrix_template.c"
31 #undef TEMPLATE_REMATRIX_DBL
32 
33 #define TEMPLATE_REMATRIX_S16
34 #include "rematrix_template.c"
35 #undef TEMPLATE_REMATRIX_S16
36 
37 #define TEMPLATE_REMATRIX_S32
38 #include "rematrix_template.c"
39 #undef TEMPLATE_REMATRIX_S32
40 
41 #define FRONT_LEFT 0
42 #define FRONT_RIGHT 1
43 #define FRONT_CENTER 2
44 #define LOW_FREQUENCY 3
45 #define BACK_LEFT 4
46 #define BACK_RIGHT 5
47 #define FRONT_LEFT_OF_CENTER 6
48 #define FRONT_RIGHT_OF_CENTER 7
49 #define BACK_CENTER 8
50 #define SIDE_LEFT 9
51 #define SIDE_RIGHT 10
52 #define TOP_CENTER 11
53 #define TOP_FRONT_LEFT 12
54 #define TOP_FRONT_CENTER 13
55 #define TOP_FRONT_RIGHT 14
56 #define TOP_BACK_LEFT 15
57 #define TOP_BACK_CENTER 16
58 #define TOP_BACK_RIGHT 17
59 
60 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
61 {
62  int nb_in, nb_out, in, out;
63 
64  if (!s || s->in_convert) // s needs to be allocated but not initialized
65  return AVERROR(EINVAL);
66  memset(s->matrix, 0, sizeof(s->matrix));
69  for (out = 0; out < nb_out; out++) {
70  for (in = 0; in < nb_in; in++)
71  s->matrix[out][in] = matrix[in];
72  matrix += stride;
73  }
74  s->rematrix_custom = 1;
75  return 0;
76 }
77 
78 static int even(int64_t layout){
79  if(!layout) return 1;
80  if(layout&(layout-1)) return 1;
81  return 0;
82 }
83 
84 static int clean_layout(SwrContext *s, int64_t layout){
85  if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
86  char buf[128];
87  av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
88  av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
89  return AV_CH_FRONT_CENTER;
90  }
91 
92  return layout;
93 }
94 
95 static int sane_layout(int64_t layout){
96  if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
97  return 0;
98  if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
99  return 0;
100  if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
101  return 0;
102  if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
103  return 0;
105  return 0;
107  return 0;
108 
109  return 1;
110 }
111 
113 {
114  int i, j, out_i;
115  double matrix[64][64]={{0}};
116  int64_t unaccounted, in_ch_layout, out_ch_layout;
117  double maxcoef=0;
118  char buf[128];
119  const int matrix_encoding = s->matrix_encoding;
120  float maxval;
121 
122  in_ch_layout = clean_layout(s, s->in_ch_layout);
123  out_ch_layout = clean_layout(s, s->out_ch_layout);
124 
125  if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
126  && (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
127  )
128  out_ch_layout = AV_CH_LAYOUT_STEREO;
129 
130  if(!sane_layout(in_ch_layout)){
131  av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
132  av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
133  return AVERROR(EINVAL);
134  }
135 
136  if(!sane_layout(out_ch_layout)){
137  av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
138  av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
139  return AVERROR(EINVAL);
140  }
141 
142  memset(s->matrix, 0, sizeof(s->matrix));
143  for(i=0; i<64; i++){
144  if(in_ch_layout & out_ch_layout & (1ULL<<i))
145  matrix[i][i]= 1.0;
146  }
147 
148  unaccounted= in_ch_layout & ~out_ch_layout;
149 
150 //FIXME implement dolby surround
151 //FIXME implement full ac3
152 
153 
154  if(unaccounted & AV_CH_FRONT_CENTER){
155  if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
156  if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
157  matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
158  matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
159  } else {
160  matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
162  }
163  }else
164  av_assert0(0);
165  }
166  if(unaccounted & AV_CH_LAYOUT_STEREO){
167  if(out_ch_layout & AV_CH_FRONT_CENTER){
168  matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
170  if(in_ch_layout & AV_CH_FRONT_CENTER)
171  matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
172  }else
173  av_assert0(0);
174  }
175 
176  if(unaccounted & AV_CH_BACK_CENTER){
177  if(out_ch_layout & AV_CH_BACK_LEFT){
178  matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
179  matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
180  }else if(out_ch_layout & AV_CH_SIDE_LEFT){
181  matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
182  matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
183  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
184  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
185  matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
186  if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
187  matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
188  matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
189  } else {
190  matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
191  matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
192  }
193  } else {
194  matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
195  matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
196  }
197  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
198  matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
199  }else
200  av_assert0(0);
201  }
202  if(unaccounted & AV_CH_BACK_LEFT){
203  if(out_ch_layout & AV_CH_BACK_CENTER){
204  matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
205  matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
206  }else if(out_ch_layout & AV_CH_SIDE_LEFT){
207  if(in_ch_layout & AV_CH_SIDE_LEFT){
208  matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
209  matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
210  }else{
211  matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
212  matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
213  }
214  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
215  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
216  matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
217  matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
218  matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
219  matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
220  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
221  matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
222  matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
223  matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
224  matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
225  } else {
226  matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
227  matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
228  }
229  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
230  matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
231  matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
232  }else
233  av_assert0(0);
234  }
235 
236  if(unaccounted & AV_CH_SIDE_LEFT){
237  if(out_ch_layout & AV_CH_BACK_LEFT){
238  /* if back channels do not exist in the input, just copy side
239  channels to back channels, otherwise mix side into back */
240  if (in_ch_layout & AV_CH_BACK_LEFT) {
241  matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
242  matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
243  } else {
244  matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
245  matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
246  }
247  }else if(out_ch_layout & AV_CH_BACK_CENTER){
248  matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
249  matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
250  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
251  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
252  matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
253  matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
254  matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
255  matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
256  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
257  matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
258  matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
259  matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
260  matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
261  } else {
262  matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
263  matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
264  }
265  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
266  matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
267  matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
268  }else
269  av_assert0(0);
270  }
271 
272  if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
273  if(out_ch_layout & AV_CH_FRONT_LEFT){
274  matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
275  matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
276  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
279  }else
280  av_assert0(0);
281  }
282  /* mix LFE into front left/right or center */
283  if (unaccounted & AV_CH_LOW_FREQUENCY) {
284  if (out_ch_layout & AV_CH_FRONT_CENTER) {
286  } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
289  } else
290  av_assert0(0);
291  }
292 
293  for(out_i=i=0; i<64; i++){
294  double sum=0;
295  int in_i=0;
296  for(j=0; j<64; j++){
297  s->matrix[out_i][in_i]= matrix[i][j];
298  if(matrix[i][j]){
299  sum += fabs(matrix[i][j]);
300  }
301  if(in_ch_layout & (1ULL<<j))
302  in_i++;
303  }
304  maxcoef= FFMAX(maxcoef, sum);
305  if(out_ch_layout & (1ULL<<i))
306  out_i++;
307  }
308  if(s->rematrix_volume < 0)
309  maxcoef = -s->rematrix_volume;
310 
311  if (s->rematrix_maxval > 0) {
312  maxval = s->rematrix_maxval;
315  maxval = 1.0;
316  } else
317  maxval = INT_MAX;
318 
319  if(maxcoef > maxval || s->rematrix_volume < 0){
320  maxcoef /= maxval;
321  for(i=0; i<SWR_CH_MAX; i++)
322  for(j=0; j<SWR_CH_MAX; j++){
323  s->matrix[i][j] /= maxcoef;
324  }
325  }
326 
327  if(s->rematrix_volume > 0){
328  for(i=0; i<SWR_CH_MAX; i++)
329  for(j=0; j<SWR_CH_MAX; j++){
330  s->matrix[i][j] *= s->rematrix_volume;
331  }
332  }
333 
334  for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
335  for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
336  av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
337  }
338  av_log(NULL, AV_LOG_DEBUG, "\n");
339  }
340  return 0;
341 }
342 
344  int i, j;
347 
348  s->mix_any_f = NULL;
349 
350  if (!s->rematrix_custom) {
351  int r = auto_matrix(s);
352  if (r)
353  return r;
354  }
355  if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
356  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
357  s->native_one = av_mallocz(sizeof(int));
358  for (i = 0; i < nb_out; i++)
359  for (j = 0; j < nb_in; j++)
360  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
361  *((int*)s->native_one) = 32768;
362  s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
363  s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
364  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
365  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
366  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
367  s->native_one = av_mallocz(sizeof(float));
368  for (i = 0; i < nb_out; i++)
369  for (j = 0; j < nb_in; j++)
370  ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
371  *((float*)s->native_one) = 1.0;
372  s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
373  s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
374  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
375  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
376  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
377  s->native_one = av_mallocz(sizeof(double));
378  for (i = 0; i < nb_out; i++)
379  for (j = 0; j < nb_in; j++)
380  ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
381  *((double*)s->native_one) = 1.0;
382  s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
383  s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
384  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
385  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
386  // Only for dithering currently
387 // s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
388  s->native_one = av_mallocz(sizeof(int));
389 // for (i = 0; i < nb_out; i++)
390 // for (j = 0; j < nb_in; j++)
391 // ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
392  *((int*)s->native_one) = 32768;
393  s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
394  s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
395  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
396  }else
397  av_assert0(0);
398  //FIXME quantize for integeres
399  for (i = 0; i < SWR_CH_MAX; i++) {
400  int ch_in=0;
401  for (j = 0; j < SWR_CH_MAX; j++) {
402  s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
403  if(s->matrix[i][j])
404  s->matrix_ch[i][++ch_in]= j;
405  }
406  s->matrix_ch[i][0]= ch_in;
407  }
408 
409  if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s);
410 
411  return 0;
412 }
413 
415  av_freep(&s->native_matrix);
416  av_freep(&s->native_one);
419 }
420 
421 int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
422  int out_i, in_i, i, j;
423  int len1 = 0;
424  int off = 0;
425 
426  if(s->mix_any_f) {
427  s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
428  return 0;
429  }
430 
431  if(s->mix_2_1_simd || s->mix_1_1_simd){
432  len1= len&~15;
433  off = len1 * out->bps;
434  }
435 
437  av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
438 
439  for(out_i=0; out_i<out->ch_count; out_i++){
440  switch(s->matrix_ch[out_i][0]){
441  case 0:
442  if(mustcopy)
443  memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
444  break;
445  case 1:
446  in_i= s->matrix_ch[out_i][1];
447  if(s->matrix[out_i][in_i]!=1.0){
448  if(s->mix_1_1_simd && len1)
449  s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
450  if(len != len1)
451  s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
452  }else if(mustcopy){
453  memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
454  }else{
455  out->ch[out_i]= in->ch[in_i];
456  }
457  break;
458  case 2: {
459  int in_i1 = s->matrix_ch[out_i][1];
460  int in_i2 = s->matrix_ch[out_i][2];
461  if(s->mix_2_1_simd && len1)
462  s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
463  else
464  s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
465  if(len != len1)
466  s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
467  break;}
468  default:
470  for(i=0; i<len; i++){
471  float v=0;
472  for(j=0; j<s->matrix_ch[out_i][0]; j++){
473  in_i= s->matrix_ch[out_i][1+j];
474  v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
475  }
476  ((float*)out->ch[out_i])[i]= v;
477  }
478  }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
479  for(i=0; i<len; i++){
480  double v=0;
481  for(j=0; j<s->matrix_ch[out_i][0]; j++){
482  in_i= s->matrix_ch[out_i][1+j];
483  v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
484  }
485  ((double*)out->ch[out_i])[i]= v;
486  }
487  }else{
488  for(i=0; i<len; i++){
489  int v=0;
490  for(j=0; j<s->matrix_ch[out_i][0]; j++){
491  in_i= s->matrix_ch[out_i][1+j];
492  v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
493  }
494  ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
495  }
496  }
497  }
498  }
499  return 0;
500 }