89     int i, ret, xpow, tmp;
 
   93     for (i=0; i<10; i+=2){
 
   94         xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
 
   98         xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
 
  109     Q31(1.0/720), 
Q31(1.0/5040), 
Q31(1.0/40320)
 
  114     int i, ret, xpow, tmp;
 
  119         xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
 
  129     int k, previous, present;
 
  130     int base, prod, nz = 0;
 
  132     base = (stop << 23) / start;
 
  133     while (base < 0x40000000){
 
  138     base = (((base + 0x80) >> 8) + (8-nz)*
CONST_LN2) / num_bands;
 
  144     for (k = 0; k < num_bands-1; k++) {
 
  145         prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
 
  146         present = (prod + 0x400000) >> 23;
 
  147         bands[k] = present - previous;
 
  150     bands[num_bands-1] = stop - previous;
 
  168                   temp1.
mant = 759250125;
 
  170                   temp1.
mant = 0x20000000;
 
  171                 temp1.
exp = (temp1.
exp >> 1) + 1;
 
  175                   temp2.
mant = 759250125;
 
  177                   temp2.
mant = 0x20000000;
 
  178                 temp2.
exp = (temp2.
exp >> 1) + 1;
 
  185             for (k = 0; k < sbr->
n_q; k++) {
 
  189                     sbr->data[0].noise_facs[e][k].mant + 2;
 
  190                 temp1.
mant = 0x20000000;
 
  192                 temp2.
mant = 0x20000000;
 
  199         for (ch = 0; ch < (id_aac == 
TYPE_CPE) + 1; ch++) {
 
  207                         temp1.
mant = 759250125;
 
  209                         temp1.
mant = 0x20000000;
 
  210                     temp1.
exp = (temp1.
exp >> 1) + 1;
 
  215                 for (k = 0; k < sbr->
n_q; k++){
 
  217                         sbr->data[ch].noise_facs[e][k].mant + 1;
 
  229                                   int (*alpha0)[2], 
int (*alpha1)[2],
 
  230                                   const int X_low[32][40][2], 
int k0)
 
  235     for (k = 0; k < k0; k++) {
 
  262         if (!phi[1][0][0].mant) {
 
  276             a00 = 
av_div_sf(temp_real, phi[1][0][0]);
 
  282             alpha0[k][0] = 0x7fffffff;
 
  287                 alpha0[k][0] = a00.
mant;
 
  289                 round = 1 << (shift-1);
 
  290                 alpha0[k][0] = (a00.
mant + 
round) >> shift;
 
  296             alpha0[k][1] = 0x7fffffff;
 
  301                 alpha0[k][1] = a01.
mant;
 
  303                 round = 1 << (shift-1);
 
  304                 alpha0[k][1] = (a01.
mant + 
round) >> shift;
 
  309             alpha1[k][0] = 0x7fffffff;
 
  314                 alpha1[k][0] = a10.
mant;
 
  316                 round = 1 << (shift-1);
 
  317                 alpha1[k][0] = (a10.
mant + 
round) >> shift;
 
  323             alpha1[k][1] = 0x7fffffff;
 
  328                 alpha1[k][1] = a11.
mant;
 
  330                 round = 1 << (shift-1);
 
  331                 alpha1[k][1] = (a11.
mant + 
round) >> shift;
 
  335         shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
 
  336                        (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
 
  338         if (shift >= 0x20000000){
 
  345         shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
 
  346                        (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
 
  348         if (shift >= 0x20000000){
 
  362     static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
 
  365     for (i = 0; i < sbr->
n_q; i++) {
 
  371         if (new_bw < ch_data->bw_array[i]){
 
  372             accu  = (int64_t)new_bw * 1610612736;
 
  373             accu += (int64_t)ch_data->
bw_array[i] * 0x20000000;
 
  374             new_bw = (
int)((accu + 0x40000000) >> 31);
 
  376             accu  = (int64_t)new_bw * 1946157056;
 
  377             accu += (int64_t)ch_data->
bw_array[i] * 201326592;
 
  378             new_bw = (
int)((accu + 0x40000000) >> 31);
 
  380         ch_data->
bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
 
  389                           SBRData *ch_data, 
const int e_a[2])
 
  393     static const SoftFloat limgain[4] = { { 760155524,  0 }, { 0x20000000,  1 },
 
  394                                             { 758351638,  1 }, { 625000000, 34 } };
 
  397         int delta = !((e == e_a[1]) || (e == e_a[0]));
 
  398         for (k = 0; k < sbr->
n_lim; k++) {
 
  400             SoftFloat sum[2] = { { 0, 0}, { 0, 0 } };
 
  401             for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
 
  424             for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
 
  435             for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
 
  440                   sbr->
q_m[e][
m] = q_m_max;
 
  442                   sbr->
gain[e][
m] = gain_max;
 
  445             for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
 
  454                 if (delta && !sbr->
s_m[e][m].mant)
 
  465             for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
 
  476                             const int X_high[64][40][2],
 
  482     const int kx = sbr->
kx[1];
 
  483     const int m_max = sbr->
m[1];
 
  496         for (i = 0; i < h_SL; i++) {
 
  497             memcpy(g_temp[i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max * 
sizeof(sbr->
gain[0][0]));
 
  498             memcpy(q_temp[i + 2*ch_data->
t_env[0]], sbr->
q_m[0],  m_max * 
sizeof(sbr->
q_m[0][0]));
 
  501         for (i = 0; i < 4; i++) {
 
  502             memcpy(g_temp[i + 2 * ch_data->
t_env[0]],
 
  505             memcpy(q_temp[i + 2 * ch_data->
t_env[0]],
 
  512         for (i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
 
  513             memcpy(g_temp[h_SL + i], sbr->
gain[e], m_max * 
sizeof(sbr->
gain[0][0]));
 
  514             memcpy(q_temp[h_SL + i], sbr->
q_m[e],  m_max * 
sizeof(sbr->
q_m[0][0]));
 
  519         for (i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
 
  524             if (h_SL && e != e_a[0] && e != e_a[1]) {
 
  527                 for (m = 0; m < m_max; m++) {
 
  528                     const int idx1 = i + h_SL;
 
  531                     for (j = 0; j <= h_SL; j++) {
 
  541                 g_filt = g_temp[i + h_SL];
 
  545             sbr->
dsp.
hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
 
  548             if (e != e_a[0] && e != e_a[1]) {
 
  553                 int idx = indexsine&1;
 
  554                 int A = (1-((indexsine+(kx & 1))&2));
 
  555                 int B = (A^(-idx)) + idx;
 
  556                 int *
out = &Y1[i][kx][idx];
 
  560                 for (m = 0; m+1 < m_max; m+=2) {
 
  561                   shift = 22 - in[
m  ].
exp;
 
  562                   round = 1 << (shift-1);
 
  565                   shift = 22 - in[m+1].
exp;
 
  566                   round = 1 << (shift-1);
 
  567                   out[2*m+2] += (in[m+1].
mant * B + 
round) >> shift;
 
  571                   shift = 22 - in[
m  ].
exp;
 
  572                   round = 1 << (shift-1);
 
  577             indexnoise = (indexnoise + m_max) & 0x1ff;
 
  578             indexsine = (indexsine + 1) & 3;
 
uint8_t s_indexmapped[8][48]
static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
Rounding-to-nearest used. 
static int shift(int a, int b)
unsigned bs_smoothing_mode
INTFLOAT bw_array[5]
Chirp factors. 
static av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b)
b has to be normalized and not zero. 
static const int fixed_log_table[10]
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214) 
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used. 
static const SoftFloat FLOAT_0
AAC_FLOAT noise_facs[3][5]
Noise scalefactors. 
AAC_SIGNE n_lim
Number of limiter bands. 
#define ENVELOPE_ADJUSTMENT_OFFSET
void(* hf_g_filt)(INTFLOAT(*Y)[2], const INTFLOAT(*X_high)[40][2], const AAC_FLOAT *g_filt, int m_max, intptr_t ixh)
AAC Spectral Band Replication decoding data. 
static int fixed_log(int x)
static const SoftFloat FLOAT_100000
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, int(*alpha0)[2], int(*alpha1)[2], const int X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
static double alpha(void *priv, double x, double y)
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR. 
static void sbr_hf_assemble(int Y1[38][64][2], const int X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220) 
static const SoftFloat FLOAT_1
static const SoftFloat FLOAT_0999999
Spectral Band Replication definitions and structures. 
simple assert() macros that are a bit more flexible than ISO C assert(). 
static av_always_inline av_const double round(double x)
AAC Spectral Band Replication decoding functions. 
common internal API header 
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame. 
AAC Spectral Band Replication function declarations. 
unsigned bs_limiter_gains
static const int CONST_RECIP_LN2
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped. 
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped. 
static av_const int av_gt_sf(SoftFloat a, SoftFloat b)
AAC definitions and structures. 
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped. 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
Replacements for frequently missing libm functions. 
static int fixed_exp(int x)
static const int CONST_076923
AAC_FLOAT q_m[7][48]
Amplitude adjusted noise scalefactors. 
AAC_FLOAT env_facs[6][48]
Envelope scalefactors. 
#define NOISE_FLOOR_OFFSET
static av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b)
AAC_FLOAT e_curr[7][48]
Estimated envelope. 
uint8_t bs_invf_mode[2][5]
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
static const int CONST_LN2
static const SoftFloat FLOAT_1584893192
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
uint8_t t_env[8]
Envelope time borders. 
aacsbr functions pointers 
AAC_FLOAT s_m[7][48]
Sinusoidal levels. 
uint16_t f_tablelim[30]
Frequency borders for the limiter. 
Spectral Band Replication per channel data. 
static const SoftFloat FLOAT_EPSILON
static const int fixed_exp_table[7]
void(* hf_apply_noise[4])(INTFLOAT(*Y)[2], const AAC_FLOAT *s_m, const AAC_FLOAT *q_filt, int noise, int kx, int m_max)
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203) 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
void(* autocorrelate)(const INTFLOAT x[40][2], AAC_FLOAT phi[3][2][2])
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat. 
static void aacsbr_func_ptr_init(AACSBRContext *c)
AAC_SIGNE n_q
Number of noise floor bands. 
Spectral Band Replication. 
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.