FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4  * Copyright (c) 2009 Jimmy Christensen
5  *
6  * B44/B44A, Tile added by Jokyo Images support by CNC - French National Center for Cinema
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * OpenEXR decoder
28  * @author Jimmy Christensen
29  *
30  * For more information on the OpenEXR format, visit:
31  * http://openexr.com/
32  *
33  * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
34  * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
35  */
36 
37 #include <float.h>
38 #include <zlib.h>
39 
40 #include "libavutil/common.h"
41 #include "libavutil/imgutils.h"
42 #include "libavutil/intfloat.h"
43 #include "libavutil/opt.h"
44 #include "libavutil/color_utils.h"
45 
46 #include "avcodec.h"
47 #include "bytestream.h"
48 #include "get_bits.h"
49 #include "internal.h"
50 #include "mathops.h"
51 #include "thread.h"
52 
53 enum ExrCompr {
63 };
64 
70 };
71 
77 };
78 
83 };
84 
85 typedef struct EXRChannel {
86  int xsub, ysub;
88 } EXRChannel;
89 
90 typedef struct EXRTileAttribute {
96 
97 typedef struct EXRThreadData {
100 
102  int tmp_size;
103 
105  uint16_t *lut;
106 
107  int ysize, xsize;
108 
110 } EXRThreadData;
111 
112 typedef struct EXRContext {
113  AVClass *class;
116 
119  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
121 
122  int w, h;
123  uint32_t xmax, xmin;
124  uint32_t ymax, ymin;
125  uint32_t xdelta, ydelta;
126 
128 
129  EXRTileAttribute tile_attr; /* header data attribute of tile */
130  int is_tile; /* 0 if scanline, 1 if tile */
131 
133  const uint8_t *buf;
134  int buf_size;
135 
139 
141 
142  const char *layer;
143 
145  float gamma;
146  uint16_t gamma_table[65536];
147 } EXRContext;
148 
149 /* -15 stored using a single precision bias of 127 */
150 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
151 
152 /* max exponent value in single precision that will be converted
153  * to Inf or Nan when stored as a half-float */
154 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
155 
156 /* 255 is the max exponent biased value */
157 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
158 
159 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
160 
161 /**
162  * Convert a half float as a uint16_t into a full float.
163  *
164  * @param hf half float as uint16_t
165  *
166  * @return float value
167  */
168 static union av_intfloat32 exr_half2float(uint16_t hf)
169 {
170  unsigned int sign = (unsigned int) (hf >> 15);
171  unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
172  unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
173  union av_intfloat32 f;
174 
175  if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
176  // we have a half-float NaN or Inf
177  // half-float NaNs will be converted to a single precision NaN
178  // half-float Infs will be converted to a single precision Inf
180  if (mantissa)
181  mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
182  } else if (exp == 0x0) {
183  // convert half-float zero/denorm to single precision value
184  if (mantissa) {
185  mantissa <<= 1;
187  // check for leading 1 in denorm mantissa
188  while ((mantissa & (1 << 10))) {
189  // for every leading 0, decrement single precision exponent by 1
190  // and shift half-float mantissa value to the left
191  mantissa <<= 1;
192  exp -= (1 << 23);
193  }
194  // clamp the mantissa to 10 bits
195  mantissa &= ((1 << 10) - 1);
196  // shift left to generate single-precision mantissa of 23 bits
197  mantissa <<= 13;
198  }
199  } else {
200  // shift left to generate single-precision mantissa of 23 bits
201  mantissa <<= 13;
202  // generate single precision biased exponent value
204  }
205 
206  f.i = (sign << 31) | exp | mantissa;
207 
208  return f;
209 }
210 
211 
212 /**
213  * Convert from 32-bit float as uint32_t to uint16_t.
214  *
215  * @param v 32-bit float
216  *
217  * @return normalized 16-bit unsigned int
218  */
219 static inline uint16_t exr_flt2uint(uint32_t v)
220 {
221  unsigned int exp = v >> 23;
222  // "HACK": negative values result in exp< 0, so clipping them to 0
223  // is also handled by this condition, avoids explicit check for sign bit.
224  if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
225  return 0;
226  if (exp >= 127)
227  return 0xffff;
228  v &= 0x007fffff;
229  return (v + (1 << 23)) >> (127 + 7 - exp);
230 }
231 
232 /**
233  * Convert from 16-bit float as uint16_t to uint16_t.
234  *
235  * @param v 16-bit float
236  *
237  * @return normalized 16-bit unsigned int
238  */
239 static inline uint16_t exr_halflt2uint(uint16_t v)
240 {
241  unsigned exp = 14 - (v >> 10);
242  if (exp >= 14) {
243  if (exp == 14)
244  return (v >> 9) & 1;
245  else
246  return (v & 0x8000) ? 0 : 0xffff;
247  }
248  v <<= 6;
249  return (v + (1 << 16)) >> (exp + 1);
250 }
251 
252 static void predictor(uint8_t *src, int size)
253 {
254  uint8_t *t = src + 1;
255  uint8_t *stop = src + size;
256 
257  while (t < stop) {
258  int d = (int) t[-1] + (int) t[0] - 128;
259  t[0] = d;
260  ++t;
261  }
262 }
263 
264 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
265 {
266  const int8_t *t1 = src;
267  const int8_t *t2 = src + (size + 1) / 2;
268  int8_t *s = dst;
269  int8_t *stop = s + size;
270 
271  while (1) {
272  if (s < stop)
273  *(s++) = *(t1++);
274  else
275  break;
276 
277  if (s < stop)
278  *(s++) = *(t2++);
279  else
280  break;
281  }
282 }
283 
284 static int zip_uncompress(const uint8_t *src, int compressed_size,
285  int uncompressed_size, EXRThreadData *td)
286 {
287  unsigned long dest_len = uncompressed_size;
288 
289  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
290  dest_len != uncompressed_size)
291  return AVERROR_INVALIDDATA;
292 
293  predictor(td->tmp, uncompressed_size);
294  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
295 
296  return 0;
297 }
298 
299 static int rle_uncompress(const uint8_t *src, int compressed_size,
300  int uncompressed_size, EXRThreadData *td)
301 {
302  uint8_t *d = td->tmp;
303  const int8_t *s = src;
304  int ssize = compressed_size;
305  int dsize = uncompressed_size;
306  uint8_t *dend = d + dsize;
307  int count;
308 
309  while (ssize > 0) {
310  count = *s++;
311 
312  if (count < 0) {
313  count = -count;
314 
315  if ((dsize -= count) < 0 ||
316  (ssize -= count + 1) < 0)
317  return AVERROR_INVALIDDATA;
318 
319  while (count--)
320  *d++ = *s++;
321  } else {
322  count++;
323 
324  if ((dsize -= count) < 0 ||
325  (ssize -= 2) < 0)
326  return AVERROR_INVALIDDATA;
327 
328  while (count--)
329  *d++ = *s;
330 
331  s++;
332  }
333  }
334 
335  if (dend != d)
336  return AVERROR_INVALIDDATA;
337 
338  predictor(td->tmp, uncompressed_size);
339  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
340 
341  return 0;
342 }
343 
344 #define USHORT_RANGE (1 << 16)
345 #define BITMAP_SIZE (1 << 13)
346 
347 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
348 {
349  int i, k = 0;
350 
351  for (i = 0; i < USHORT_RANGE; i++)
352  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
353  lut[k++] = i;
354 
355  i = k - 1;
356 
357  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
358 
359  return i;
360 }
361 
362 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
363 {
364  int i;
365 
366  for (i = 0; i < dsize; ++i)
367  dst[i] = lut[dst[i]];
368 }
369 
370 #define HUF_ENCBITS 16 // literal (value) bit length
371 #define HUF_DECBITS 14 // decoding bit size (>= 8)
372 
373 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
374 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
375 #define HUF_DECMASK (HUF_DECSIZE - 1)
376 
377 typedef struct HufDec {
378  int len;
379  int lit;
380  int *p;
381 } HufDec;
382 
383 static void huf_canonical_code_table(uint64_t *hcode)
384 {
385  uint64_t c, n[59] = { 0 };
386  int i;
387 
388  for (i = 0; i < HUF_ENCSIZE; ++i)
389  n[hcode[i]] += 1;
390 
391  c = 0;
392  for (i = 58; i > 0; --i) {
393  uint64_t nc = ((c + n[i]) >> 1);
394  n[i] = c;
395  c = nc;
396  }
397 
398  for (i = 0; i < HUF_ENCSIZE; ++i) {
399  int l = hcode[i];
400 
401  if (l > 0)
402  hcode[i] = l | (n[l]++ << 6);
403  }
404 }
405 
406 #define SHORT_ZEROCODE_RUN 59
407 #define LONG_ZEROCODE_RUN 63
408 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
409 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
410 
412  int32_t im, int32_t iM, uint64_t *hcode)
413 {
414  GetBitContext gbit;
415  int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
416  if (ret < 0)
417  return ret;
418 
419  for (; im <= iM; im++) {
420  uint64_t l = hcode[im] = get_bits(&gbit, 6);
421 
422  if (l == LONG_ZEROCODE_RUN) {
423  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
424 
425  if (im + zerun > iM + 1)
426  return AVERROR_INVALIDDATA;
427 
428  while (zerun--)
429  hcode[im++] = 0;
430 
431  im--;
432  } else if (l >= SHORT_ZEROCODE_RUN) {
433  int zerun = l - SHORT_ZEROCODE_RUN + 2;
434 
435  if (im + zerun > iM + 1)
436  return AVERROR_INVALIDDATA;
437 
438  while (zerun--)
439  hcode[im++] = 0;
440 
441  im--;
442  }
443  }
444 
445  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
447 
448  return 0;
449 }
450 
451 static int huf_build_dec_table(const uint64_t *hcode, int im,
452  int iM, HufDec *hdecod)
453 {
454  for (; im <= iM; im++) {
455  uint64_t c = hcode[im] >> 6;
456  int i, l = hcode[im] & 63;
457 
458  if (c >> l)
459  return AVERROR_INVALIDDATA;
460 
461  if (l > HUF_DECBITS) {
462  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
463  if (pl->len)
464  return AVERROR_INVALIDDATA;
465 
466  pl->lit++;
467 
468  pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
469  if (!pl->p)
470  return AVERROR(ENOMEM);
471 
472  pl->p[pl->lit - 1] = im;
473  } else if (l) {
474  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
475 
476  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
477  if (pl->len || pl->p)
478  return AVERROR_INVALIDDATA;
479  pl->len = l;
480  pl->lit = im;
481  }
482  }
483  }
484 
485  return 0;
486 }
487 
488 #define get_char(c, lc, gb) \
489 { \
490  c = (c << 8) | bytestream2_get_byte(gb); \
491  lc += 8; \
492 }
493 
494 #define get_code(po, rlc, c, lc, gb, out, oe, outb) \
495 { \
496  if (po == rlc) { \
497  if (lc < 8) \
498  get_char(c, lc, gb); \
499  lc -= 8; \
500  \
501  cs = c >> lc; \
502  \
503  if (out + cs > oe || out == outb) \
504  return AVERROR_INVALIDDATA; \
505  \
506  s = out[-1]; \
507  \
508  while (cs-- > 0) \
509  *out++ = s; \
510  } else if (out < oe) { \
511  *out++ = po; \
512  } else { \
513  return AVERROR_INVALIDDATA; \
514  } \
515 }
516 
517 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
518  GetByteContext *gb, int nbits,
519  int rlc, int no, uint16_t *out)
520 {
521  uint64_t c = 0;
522  uint16_t *outb = out;
523  uint16_t *oe = out + no;
524  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
525  uint8_t cs;
526  uint16_t s;
527  int i, lc = 0;
528 
529  while (gb->buffer < ie) {
530  get_char(c, lc, gb);
531 
532  while (lc >= HUF_DECBITS) {
533  const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
534 
535  if (pl.len) {
536  lc -= pl.len;
537  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
538  } else {
539  int j;
540 
541  if (!pl.p)
542  return AVERROR_INVALIDDATA;
543 
544  for (j = 0; j < pl.lit; j++) {
545  int l = hcode[pl.p[j]] & 63;
546 
547  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
548  get_char(c, lc, gb);
549 
550  if (lc >= l) {
551  if ((hcode[pl.p[j]] >> 6) ==
552  ((c >> (lc - l)) & ((1LL << l) - 1))) {
553  lc -= l;
554  get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
555  break;
556  }
557  }
558  }
559 
560  if (j == pl.lit)
561  return AVERROR_INVALIDDATA;
562  }
563  }
564  }
565 
566  i = (8 - nbits) & 7;
567  c >>= i;
568  lc -= i;
569 
570  while (lc > 0) {
571  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
572 
573  if (pl.len) {
574  lc -= pl.len;
575  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
576  } else {
577  return AVERROR_INVALIDDATA;
578  }
579  }
580 
581  if (out - outb != no)
582  return AVERROR_INVALIDDATA;
583  return 0;
584 }
585 
587  uint16_t *dst, int dst_size)
588 {
589  int32_t src_size, im, iM;
590  uint32_t nBits;
591  uint64_t *freq;
592  HufDec *hdec;
593  int ret, i;
594 
595  src_size = bytestream2_get_le32(gb);
596  im = bytestream2_get_le32(gb);
597  iM = bytestream2_get_le32(gb);
598  bytestream2_skip(gb, 4);
599  nBits = bytestream2_get_le32(gb);
600  if (im < 0 || im >= HUF_ENCSIZE ||
601  iM < 0 || iM >= HUF_ENCSIZE ||
602  src_size < 0)
603  return AVERROR_INVALIDDATA;
604 
605  bytestream2_skip(gb, 4);
606 
607  freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
608  hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
609  if (!freq || !hdec) {
610  ret = AVERROR(ENOMEM);
611  goto fail;
612  }
613 
614  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
615  goto fail;
616 
617  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
618  ret = AVERROR_INVALIDDATA;
619  goto fail;
620  }
621 
622  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
623  goto fail;
624  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
625 
626 fail:
627  for (i = 0; i < HUF_DECSIZE; i++)
628  if (hdec)
629  av_freep(&hdec[i].p);
630 
631  av_free(freq);
632  av_free(hdec);
633 
634  return ret;
635 }
636 
637 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
638 {
639  int16_t ls = l;
640  int16_t hs = h;
641  int hi = hs;
642  int ai = ls + (hi & 1) + (hi >> 1);
643  int16_t as = ai;
644  int16_t bs = ai - hi;
645 
646  *a = as;
647  *b = bs;
648 }
649 
650 #define NBITS 16
651 #define A_OFFSET (1 << (NBITS - 1))
652 #define MOD_MASK ((1 << NBITS) - 1)
653 
654 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
655 {
656  int m = l;
657  int d = h;
658  int bb = (m - (d >> 1)) & MOD_MASK;
659  int aa = (d + bb - A_OFFSET) & MOD_MASK;
660  *b = bb;
661  *a = aa;
662 }
663 
664 static void wav_decode(uint16_t *in, int nx, int ox,
665  int ny, int oy, uint16_t mx)
666 {
667  int w14 = (mx < (1 << 14));
668  int n = (nx > ny) ? ny : nx;
669  int p = 1;
670  int p2;
671 
672  while (p <= n)
673  p <<= 1;
674 
675  p >>= 1;
676  p2 = p;
677  p >>= 1;
678 
679  while (p >= 1) {
680  uint16_t *py = in;
681  uint16_t *ey = in + oy * (ny - p2);
682  uint16_t i00, i01, i10, i11;
683  int oy1 = oy * p;
684  int oy2 = oy * p2;
685  int ox1 = ox * p;
686  int ox2 = ox * p2;
687 
688  for (; py <= ey; py += oy2) {
689  uint16_t *px = py;
690  uint16_t *ex = py + ox * (nx - p2);
691 
692  for (; px <= ex; px += ox2) {
693  uint16_t *p01 = px + ox1;
694  uint16_t *p10 = px + oy1;
695  uint16_t *p11 = p10 + ox1;
696 
697  if (w14) {
698  wdec14(*px, *p10, &i00, &i10);
699  wdec14(*p01, *p11, &i01, &i11);
700  wdec14(i00, i01, px, p01);
701  wdec14(i10, i11, p10, p11);
702  } else {
703  wdec16(*px, *p10, &i00, &i10);
704  wdec16(*p01, *p11, &i01, &i11);
705  wdec16(i00, i01, px, p01);
706  wdec16(i10, i11, p10, p11);
707  }
708  }
709 
710  if (nx & p) {
711  uint16_t *p10 = px + oy1;
712 
713  if (w14)
714  wdec14(*px, *p10, &i00, p10);
715  else
716  wdec16(*px, *p10, &i00, p10);
717 
718  *px = i00;
719  }
720  }
721 
722  if (ny & p) {
723  uint16_t *px = py;
724  uint16_t *ex = py + ox * (nx - p2);
725 
726  for (; px <= ex; px += ox2) {
727  uint16_t *p01 = px + ox1;
728 
729  if (w14)
730  wdec14(*px, *p01, &i00, p01);
731  else
732  wdec16(*px, *p01, &i00, p01);
733 
734  *px = i00;
735  }
736  }
737 
738  p2 = p;
739  p >>= 1;
740  }
741 }
742 
743 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
744  int dsize, EXRThreadData *td)
745 {
746  GetByteContext gb;
747  uint16_t maxval, min_non_zero, max_non_zero;
748  uint16_t *ptr;
749  uint16_t *tmp = (uint16_t *)td->tmp;
750  uint8_t *out;
751  int ret, i, j;
752 
753  if (!td->bitmap)
755  if (!td->lut)
756  td->lut = av_malloc(1 << 17);
757  if (!td->bitmap || !td->lut) {
758  av_freep(&td->bitmap);
759  av_freep(&td->lut);
760  return AVERROR(ENOMEM);
761  }
762 
763  bytestream2_init(&gb, src, ssize);
764  min_non_zero = bytestream2_get_le16(&gb);
765  max_non_zero = bytestream2_get_le16(&gb);
766 
767  if (max_non_zero >= BITMAP_SIZE)
768  return AVERROR_INVALIDDATA;
769 
770  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
771  if (min_non_zero <= max_non_zero)
772  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
773  max_non_zero - min_non_zero + 1);
774  memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
775 
776  maxval = reverse_lut(td->bitmap, td->lut);
777 
778  ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
779  if (ret)
780  return ret;
781 
782  ptr = tmp;
783  for (i = 0; i < s->nb_channels; i++) {
784  EXRChannel *channel = &s->channels[i];
785  int size = channel->pixel_type;
786 
787  for (j = 0; j < size; j++)
788  wav_decode(ptr + j, td->xsize, size, td->ysize,
789  td->xsize * size, maxval);
790  ptr += td->xsize * td->ysize * size;
791  }
792 
793  apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
794 
795  out = td->uncompressed_data;
796  for (i = 0; i < td->ysize; i++)
797  for (j = 0; j < s->nb_channels; j++) {
798  uint16_t *in = tmp + j * td->xsize * td->ysize + i * td->xsize;
799  memcpy(out, in, td->xsize * 2);
800  out += td->xsize * 2;
801  }
802 
803  return 0;
804 }
805 
807  int compressed_size, int uncompressed_size,
808  EXRThreadData *td)
809 {
810  unsigned long dest_len, expected_len = 0;
811  const uint8_t *in = td->tmp;
812  uint8_t *out;
813  int c, i, j;
814 
815  for (i = 0; i < s->nb_channels; i++) {
816  if (s->channels[i].pixel_type == EXR_FLOAT) {
817  expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
818  } else if (s->channels[i].pixel_type == EXR_HALF) {
819  expected_len += (td->xsize * td->ysize * 2);
820  } else {//UINT 32
821  expected_len += (td->xsize * td->ysize * 4);
822  }
823  }
824 
825  dest_len = expected_len;
826 
827  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
828  return AVERROR_INVALIDDATA;
829  } else if (dest_len != expected_len) {
830  return AVERROR_INVALIDDATA;
831  }
832 
833  out = td->uncompressed_data;
834  for (i = 0; i < td->ysize; i++)
835  for (c = 0; c < s->nb_channels; c++) {
836  EXRChannel *channel = &s->channels[c];
837  const uint8_t *ptr[4];
838  uint32_t pixel = 0;
839 
840  switch (channel->pixel_type) {
841  case EXR_FLOAT:
842  ptr[0] = in;
843  ptr[1] = ptr[0] + td->xsize;
844  ptr[2] = ptr[1] + td->xsize;
845  in = ptr[2] + td->xsize;
846 
847  for (j = 0; j < td->xsize; ++j) {
848  uint32_t diff = (*(ptr[0]++) << 24) |
849  (*(ptr[1]++) << 16) |
850  (*(ptr[2]++) << 8);
851  pixel += diff;
852  bytestream_put_le32(&out, pixel);
853  }
854  break;
855  case EXR_HALF:
856  ptr[0] = in;
857  ptr[1] = ptr[0] + td->xsize;
858  in = ptr[1] + td->xsize;
859  for (j = 0; j < td->xsize; j++) {
860  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
861 
862  pixel += diff;
863  bytestream_put_le16(&out, pixel);
864  }
865  break;
866  default:
867  return AVERROR_INVALIDDATA;
868  }
869  }
870 
871  return 0;
872 }
873 
874 static void unpack_14(const uint8_t b[14], uint16_t s[16])
875 {
876  unsigned short shift = (b[ 2] >> 2);
877  unsigned short bias = (0x20 << shift);
878  int i;
879 
880  s[ 0] = (b[0] << 8) | b[1];
881 
882  s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
883  s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
884  s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
885 
886  s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
887  s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
888  s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
889  s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
890 
891  s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
892  s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
893  s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
894  s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
895 
896  s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
897  s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
898  s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
899  s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
900 
901  for (i = 0; i < 16; ++i) {
902  if (s[i] & 0x8000)
903  s[i] &= 0x7fff;
904  else
905  s[i] = ~s[i];
906  }
907 }
908 
909 static void unpack_3(const uint8_t b[3], uint16_t s[16])
910 {
911  int i;
912 
913  s[0] = (b[0] << 8) | b[1];
914 
915  if (s[0] & 0x8000)
916  s[0] &= 0x7fff;
917  else
918  s[0] = ~s[0];
919 
920  for (i = 1; i < 16; i++)
921  s[i] = s[0];
922 }
923 
924 
925 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
926  int uncompressed_size, EXRThreadData *td) {
927  const int8_t *sr = src;
928  int stayToUncompress = compressed_size;
929  int nbB44BlockW, nbB44BlockH;
930  int indexHgX, indexHgY, indexOut, indexTmp;
931  uint16_t tmpBuffer[16]; /* B44 use 4x4 half float pixel */
932  int c, iY, iX, y, x;
933  int target_channel_offset = 0;
934 
935  /* calc B44 block count */
936  nbB44BlockW = td->xsize / 4;
937  if ((td->xsize % 4) != 0)
938  nbB44BlockW++;
939 
940  nbB44BlockH = td->ysize / 4;
941  if ((td->ysize % 4) != 0)
942  nbB44BlockH++;
943 
944  for (c = 0; c < s->nb_channels; c++) {
945  if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
946  for (iY = 0; iY < nbB44BlockH; iY++) {
947  for (iX = 0; iX < nbB44BlockW; iX++) {/* For each B44 block */
948  if (stayToUncompress < 3) {
949  av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stayToUncompress);
950  return AVERROR_INVALIDDATA;
951  }
952 
953  if (src[compressed_size - stayToUncompress + 2] == 0xfc) { /* B44A block */
954  unpack_3(sr, tmpBuffer);
955  sr += 3;
956  stayToUncompress -= 3;
957  } else {/* B44 Block */
958  if (stayToUncompress < 14) {
959  av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stayToUncompress);
960  return AVERROR_INVALIDDATA;
961  }
962  unpack_14(sr, tmpBuffer);
963  sr += 14;
964  stayToUncompress -= 14;
965  }
966 
967  /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
968  indexHgX = iX * 4;
969  indexHgY = iY * 4;
970 
971  for (y = indexHgY; y < FFMIN(indexHgY + 4, td->ysize); y++) {
972  for (x = indexHgX; x < FFMIN(indexHgX + 4, td->xsize); x++) {
973  indexOut = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
974  indexTmp = (y-indexHgY) * 4 + (x-indexHgX);
975  td->uncompressed_data[indexOut] = tmpBuffer[indexTmp] & 0xff;
976  td->uncompressed_data[indexOut + 1] = tmpBuffer[indexTmp] >> 8;
977  }
978  }
979  }
980  }
981  target_channel_offset += 2;
982  } else {/* Float or UINT 32 channel */
983  if (stayToUncompress < td->ysize * td->xsize * 4) {
984  av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stayToUncompress);
985  return AVERROR_INVALIDDATA;
986  }
987 
988  for (y = 0; y < td->ysize; y++) {
989  indexOut = target_channel_offset * td->xsize + y * td->channel_line_size;
990  memcpy(&td->uncompressed_data[indexOut], sr, td->xsize * 4);
991  sr += td->xsize * 4;
992  }
993  target_channel_offset += 4;
994 
995  stayToUncompress -= td->ysize * td->xsize * 4;
996  }
997  }
998 
999  return 0;
1000 }
1001 
1002 static int decode_block(AVCodecContext *avctx, void *tdata,
1003  int jobnr, int threadnr)
1004 {
1005  EXRContext *s = avctx->priv_data;
1006  AVFrame *const p = s->picture;
1007  EXRThreadData *td = &s->thread_data[threadnr];
1008  const uint8_t *channel_buffer[4] = { 0 };
1009  const uint8_t *buf = s->buf;
1010  uint64_t line_offset, uncompressed_size;
1011  uint16_t *ptr_x;
1012  uint8_t *ptr;
1013  uint32_t data_size, line, col = 0;
1014  uint32_t tileX, tileY, tileLevelX, tileLevelY;
1015  const uint8_t *src;
1016  int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; /* nb pixel to add at the right of the datawindow */
1017  int bxmin = s->xmin * 2 * s->desc->nb_components; /* nb pixel to add at the left of the datawindow */
1018  int i, x, buf_size = s->buf_size;
1019  float one_gamma = 1.0f / s->gamma;
1021  int ret;
1022 
1023  line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1024 
1025  if (s->is_tile) {
1026  if (line_offset > buf_size - 20)
1027  return AVERROR_INVALIDDATA;
1028 
1029  src = buf + line_offset + 20;
1030 
1031  tileX = AV_RL32(src - 20);
1032  tileY = AV_RL32(src - 16);
1033  tileLevelX = AV_RL32(src - 12);
1034  tileLevelY = AV_RL32(src - 8);
1035 
1036  data_size = AV_RL32(src - 4);
1037  if (data_size <= 0 || data_size > buf_size)
1038  return AVERROR_INVALIDDATA;
1039 
1040  if (tileLevelX || tileLevelY) { /* tile level, is not the full res level */
1041  avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1042  return AVERROR_PATCHWELCOME;
1043  }
1044 
1045  line = s->tile_attr.ySize * tileY;
1046  col = s->tile_attr.xSize * tileX;
1047 
1048  td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tileY * s->tile_attr.ySize);
1049  td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tileX * s->tile_attr.xSize);
1050 
1051  if (col) { /* not the first tile of the line */
1052  bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1053  }
1054 
1055  if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1056  axmax = 0; /* doesn't add pixel at the right of the datawindow */
1057 
1058  td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1059  uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1060  } else {
1061  if (line_offset > buf_size - 8)
1062  return AVERROR_INVALIDDATA;
1063 
1064  src = buf + line_offset + 8;
1065  line = AV_RL32(src - 8);
1066 
1067  if (line < s->ymin || line > s->ymax)
1068  return AVERROR_INVALIDDATA;
1069 
1070  data_size = AV_RL32(src - 4);
1071  if (data_size <= 0 || data_size > buf_size)
1072  return AVERROR_INVALIDDATA;
1073 
1074  td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1075  td->xsize = s->xdelta;
1076 
1077  td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1078  uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1079 
1080  if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1081  line_offset > buf_size - uncompressed_size)) ||
1082  (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1083  line_offset > buf_size - data_size))) {
1084  return AVERROR_INVALIDDATA;
1085  }
1086  }
1087 
1088  if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1089  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1090  if (!td->tmp)
1091  return AVERROR(ENOMEM);
1092  }
1093 
1094  if (data_size < uncompressed_size) {
1096  &td->uncompressed_size, uncompressed_size);
1097 
1098  if (!td->uncompressed_data)
1099  return AVERROR(ENOMEM);
1100 
1101  ret = AVERROR_INVALIDDATA;
1102  switch (s->compression) {
1103  case EXR_ZIP1:
1104  case EXR_ZIP16:
1105  ret = zip_uncompress(src, data_size, uncompressed_size, td);
1106  break;
1107  case EXR_PIZ:
1108  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1109  break;
1110  case EXR_PXR24:
1111  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1112  break;
1113  case EXR_RLE:
1114  ret = rle_uncompress(src, data_size, uncompressed_size, td);
1115  break;
1116  case EXR_B44:
1117  case EXR_B44A:
1118  ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1119  break;
1120  }
1121  if (ret < 0) {
1122  av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1123  return ret;
1124  }
1125  src = td->uncompressed_data;
1126  }
1127 
1128  channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1129  channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1130  channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1131  if (s->channel_offsets[3] >= 0)
1132  channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1133 
1134  ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1135 
1136  for (i = 0;
1137  i < td->ysize; i++, ptr += p->linesize[0]) {
1138 
1139  const uint8_t *r, *g, *b, *a;
1140 
1141  r = channel_buffer[0];
1142  g = channel_buffer[1];
1143  b = channel_buffer[2];
1144  if (channel_buffer[3])
1145  a = channel_buffer[3];
1146 
1147  ptr_x = (uint16_t *) ptr;
1148 
1149  // Zero out the start if xmin is not 0
1150  memset(ptr_x, 0, bxmin);
1151  ptr_x += s->xmin * s->desc->nb_components;
1152 
1153  if (s->pixel_type == EXR_FLOAT) {
1154  // 32-bit
1155  if (trc_func) {
1156  for (x = 0; x < td->xsize; x++) {
1157  union av_intfloat32 t;
1158  t.i = bytestream_get_le32(&r);
1159  t.f = trc_func(t.f);
1160  *ptr_x++ = exr_flt2uint(t.i);
1161 
1162  t.i = bytestream_get_le32(&g);
1163  t.f = trc_func(t.f);
1164  *ptr_x++ = exr_flt2uint(t.i);
1165 
1166  t.i = bytestream_get_le32(&b);
1167  t.f = trc_func(t.f);
1168  *ptr_x++ = exr_flt2uint(t.i);
1169  if (channel_buffer[3])
1170  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1171  }
1172  } else {
1173  for (x = 0; x < td->xsize; x++) {
1174  union av_intfloat32 t;
1175  t.i = bytestream_get_le32(&r);
1176  if (t.f > 0.0f) /* avoid negative values */
1177  t.f = powf(t.f, one_gamma);
1178  *ptr_x++ = exr_flt2uint(t.i);
1179 
1180  t.i = bytestream_get_le32(&g);
1181  if (t.f > 0.0f)
1182  t.f = powf(t.f, one_gamma);
1183  *ptr_x++ = exr_flt2uint(t.i);
1184 
1185  t.i = bytestream_get_le32(&b);
1186  if (t.f > 0.0f)
1187  t.f = powf(t.f, one_gamma);
1188  *ptr_x++ = exr_flt2uint(t.i);
1189  if (channel_buffer[3])
1190  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1191  }
1192  }
1193  } else {
1194  // 16-bit
1195  for (x = 0; x < td->xsize; x++) {
1196  *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
1197  *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
1198  *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
1199  if (channel_buffer[3])
1200  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
1201  }
1202  }
1203 
1204  // Zero out the end if xmax+1 is not w
1205  memset(ptr_x, 0, axmax);
1206 
1207  channel_buffer[0] += td->channel_line_size;
1208  channel_buffer[1] += td->channel_line_size;
1209  channel_buffer[2] += td->channel_line_size;
1210  if (channel_buffer[3])
1211  channel_buffer[3] += td->channel_line_size;
1212  }
1213 
1214  return 0;
1215 }
1216 
1217 /**
1218  * Check if the variable name corresponds to its data type.
1219  *
1220  * @param s the EXRContext
1221  * @param value_name name of the variable to check
1222  * @param value_type type of the variable to check
1223  * @param minimum_length minimum length of the variable data
1224  *
1225  * @return bytes to read containing variable data
1226  * -1 if variable is not found
1227  * 0 if buffer ended prematurely
1228  */
1230  const char *value_name,
1231  const char *value_type,
1232  unsigned int minimum_length)
1233 {
1234  int var_size = -1;
1235 
1236  if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1237  !strcmp(s->gb.buffer, value_name)) {
1238  // found value_name, jump to value_type (null terminated strings)
1239  s->gb.buffer += strlen(value_name) + 1;
1240  if (!strcmp(s->gb.buffer, value_type)) {
1241  s->gb.buffer += strlen(value_type) + 1;
1242  var_size = bytestream2_get_le32(&s->gb);
1243  // don't go read past boundaries
1244  if (var_size > bytestream2_get_bytes_left(&s->gb))
1245  var_size = 0;
1246  } else {
1247  // value_type not found, reset the buffer
1248  s->gb.buffer -= strlen(value_name) + 1;
1250  "Unknown data type %s for header variable %s.\n",
1251  value_type, value_name);
1252  }
1253  }
1254 
1255  return var_size;
1256 }
1257 
1259 {
1260  int magic_number, version, i, flags, sar = 0;
1261  int layer_match = 0;
1262 
1263  s->current_channel_offset = 0;
1264  s->xmin = ~0;
1265  s->xmax = ~0;
1266  s->ymin = ~0;
1267  s->ymax = ~0;
1268  s->xdelta = ~0;
1269  s->ydelta = ~0;
1270  s->channel_offsets[0] = -1;
1271  s->channel_offsets[1] = -1;
1272  s->channel_offsets[2] = -1;
1273  s->channel_offsets[3] = -1;
1274  s->pixel_type = EXR_UNKNOWN;
1275  s->compression = EXR_UNKN;
1276  s->nb_channels = 0;
1277  s->w = 0;
1278  s->h = 0;
1279  s->tile_attr.xSize = -1;
1280  s->tile_attr.ySize = -1;
1281  s->is_tile = 0;
1282 
1283  if (bytestream2_get_bytes_left(&s->gb) < 10) {
1284  av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1285  return AVERROR_INVALIDDATA;
1286  }
1287 
1288  magic_number = bytestream2_get_le32(&s->gb);
1289  if (magic_number != 20000630) {
1290  /* As per documentation of OpenEXR, it is supposed to be
1291  * int 20000630 little-endian */
1292  av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1293  return AVERROR_INVALIDDATA;
1294  }
1295 
1296  version = bytestream2_get_byte(&s->gb);
1297  if (version != 2) {
1298  avpriv_report_missing_feature(s->avctx, "Version %d", version);
1299  return AVERROR_PATCHWELCOME;
1300  }
1301 
1302  flags = bytestream2_get_le24(&s->gb);
1303 
1304  if (flags == 0x00)
1305  s->is_tile = 0;
1306  else if (flags & 0x02)
1307  s->is_tile = 1;
1308  else{
1309  avpriv_report_missing_feature(s->avctx, "flags %d", flags);
1310  return AVERROR_PATCHWELCOME;
1311  }
1312 
1313  // Parse the header
1314  while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1315  int var_size;
1316  if ((var_size = check_header_variable(s, "channels",
1317  "chlist", 38)) >= 0) {
1318  GetByteContext ch_gb;
1319  if (!var_size)
1320  return AVERROR_INVALIDDATA;
1321 
1322  bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1323 
1324  while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1325  EXRChannel *channel;
1326  enum ExrPixelType current_pixel_type;
1327  int channel_index = -1;
1328  int xsub, ysub;
1329 
1330  if (strcmp(s->layer, "") != 0) {
1331  if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1332  layer_match = 1;
1333  av_log(s->avctx, AV_LOG_INFO,
1334  "Channel match layer : %s.\n", ch_gb.buffer);
1335  ch_gb.buffer += strlen(s->layer);
1336  if (*ch_gb.buffer == '.')
1337  ch_gb.buffer++; /* skip dot if not given */
1338  } else {
1339  av_log(s->avctx, AV_LOG_INFO,
1340  "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1341  }
1342  } else {
1343  layer_match = 1;
1344  }
1345 
1346  if (layer_match) { /* only search channel if the layer match is valid */
1347  if (!strcmp(ch_gb.buffer, "R") ||
1348  !strcmp(ch_gb.buffer, "X") ||
1349  !strcmp(ch_gb.buffer, "U"))
1350  channel_index = 0;
1351  else if (!strcmp(ch_gb.buffer, "G") ||
1352  !strcmp(ch_gb.buffer, "Y") ||
1353  !strcmp(ch_gb.buffer, "V"))
1354  channel_index = 1;
1355  else if (!strcmp(ch_gb.buffer, "B") ||
1356  !strcmp(ch_gb.buffer, "Z") ||
1357  !strcmp(ch_gb.buffer, "W"))
1358  channel_index = 2;
1359  else if (!strcmp(ch_gb.buffer, "A"))
1360  channel_index = 3;
1361  else
1363  "Unsupported channel %.256s.\n", ch_gb.buffer);
1364  }
1365 
1366  /* skip until you get a 0 */
1367  while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1368  bytestream2_get_byte(&ch_gb))
1369  continue;
1370 
1371  if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1372  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1373  return AVERROR_INVALIDDATA;
1374  }
1375 
1376  current_pixel_type = bytestream2_get_le32(&ch_gb);
1377  if (current_pixel_type >= EXR_UNKNOWN) {
1378  avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1379  current_pixel_type);
1380  return AVERROR_PATCHWELCOME;
1381  }
1382 
1383  bytestream2_skip(&ch_gb, 4);
1384  xsub = bytestream2_get_le32(&ch_gb);
1385  ysub = bytestream2_get_le32(&ch_gb);
1386  if (xsub != 1 || ysub != 1) {
1388  "Subsampling %dx%d",
1389  xsub, ysub);
1390  return AVERROR_PATCHWELCOME;
1391  }
1392 
1393  if (s->channel_offsets[channel_index] == -1){/* channel have not been previously assign */
1394  if (channel_index >= 0) {
1395  if (s->pixel_type != EXR_UNKNOWN &&
1396  s->pixel_type != current_pixel_type) {
1398  "RGB channels not of the same depth.\n");
1399  return AVERROR_INVALIDDATA;
1400  }
1401  s->pixel_type = current_pixel_type;
1402  s->channel_offsets[channel_index] = s->current_channel_offset;
1403  }
1404  }
1405 
1406  s->channels = av_realloc(s->channels,
1407  ++s->nb_channels * sizeof(EXRChannel));
1408  if (!s->channels)
1409  return AVERROR(ENOMEM);
1410  channel = &s->channels[s->nb_channels - 1];
1411  channel->pixel_type = current_pixel_type;
1412  channel->xsub = xsub;
1413  channel->ysub = ysub;
1414 
1415  s->current_channel_offset += 1 << current_pixel_type;
1416  }
1417 
1418  /* Check if all channels are set with an offset or if the channels
1419  * are causing an overflow */
1420  if (FFMIN3(s->channel_offsets[0],
1421  s->channel_offsets[1],
1422  s->channel_offsets[2]) < 0) {
1423  if (s->channel_offsets[0] < 0)
1424  av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1425  if (s->channel_offsets[1] < 0)
1426  av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1427  if (s->channel_offsets[2] < 0)
1428  av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1429  return AVERROR_INVALIDDATA;
1430  }
1431 
1432  // skip one last byte and update main gb
1433  s->gb.buffer = ch_gb.buffer + 1;
1434  continue;
1435  } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1436  31)) >= 0) {
1437  if (!var_size)
1438  return AVERROR_INVALIDDATA;
1439 
1440  s->xmin = bytestream2_get_le32(&s->gb);
1441  s->ymin = bytestream2_get_le32(&s->gb);
1442  s->xmax = bytestream2_get_le32(&s->gb);
1443  s->ymax = bytestream2_get_le32(&s->gb);
1444  s->xdelta = (s->xmax - s->xmin) + 1;
1445  s->ydelta = (s->ymax - s->ymin) + 1;
1446 
1447  continue;
1448  } else if ((var_size = check_header_variable(s, "displayWindow",
1449  "box2i", 34)) >= 0) {
1450  if (!var_size)
1451  return AVERROR_INVALIDDATA;
1452 
1453  bytestream2_skip(&s->gb, 8);
1454  s->w = bytestream2_get_le32(&s->gb) + 1;
1455  s->h = bytestream2_get_le32(&s->gb) + 1;
1456 
1457  continue;
1458  } else if ((var_size = check_header_variable(s, "lineOrder",
1459  "lineOrder", 25)) >= 0) {
1460  int line_order;
1461  if (!var_size)
1462  return AVERROR_INVALIDDATA;
1463 
1464  line_order = bytestream2_get_byte(&s->gb);
1465  av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1466  if (line_order > 2) {
1467  av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1468  return AVERROR_INVALIDDATA;
1469  }
1470 
1471  continue;
1472  } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1473  "float", 31)) >= 0) {
1474  if (!var_size)
1475  return AVERROR_INVALIDDATA;
1476 
1477  sar = bytestream2_get_le32(&s->gb);
1478 
1479  continue;
1480  } else if ((var_size = check_header_variable(s, "compression",
1481  "compression", 29)) >= 0) {
1482  if (!var_size)
1483  return AVERROR_INVALIDDATA;
1484 
1485  if (s->compression == EXR_UNKN)
1486  s->compression = bytestream2_get_byte(&s->gb);
1487  else
1489  "Found more than one compression attribute.\n");
1490 
1491  continue;
1492  } else if ((var_size = check_header_variable(s, "tiles",
1493  "tiledesc", 22)) >= 0) {
1494  char tileLevel;
1495 
1496  if (!s->is_tile)
1498  "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1499 
1500  s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1501  s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1502 
1503  tileLevel = bytestream2_get_byte(&s->gb);
1504  s->tile_attr.level_mode = tileLevel & 0x0f;
1505  s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1506 
1508  avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1509  s->tile_attr.level_mode);
1510  return AVERROR_PATCHWELCOME;
1511  }
1512 
1514  avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1515  s->tile_attr.level_round);
1516  return AVERROR_PATCHWELCOME;
1517  }
1518 
1519  continue;
1520  }
1521 
1522  // Check if there are enough bytes for a header
1523  if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1524  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1525  return AVERROR_INVALIDDATA;
1526  }
1527 
1528  // Process unknown variables
1529  for (i = 0; i < 2; i++) // value_name and value_type
1530  while (bytestream2_get_byte(&s->gb) != 0);
1531 
1532  // Skip variable length
1533  bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1534  }
1535 
1536  ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1537 
1538  if (s->compression == EXR_UNKN) {
1539  av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1540  return AVERROR_INVALIDDATA;
1541  }
1542 
1543  if (s->is_tile) {
1544  if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1545  av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1546  return AVERROR_INVALIDDATA;
1547  }
1548  }
1549 
1550  if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1551  av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1552  return AVERROR_INVALIDDATA;
1553  }
1554 
1555  // aaand we are done
1556  bytestream2_skip(&s->gb, 1);
1557  return 0;
1558 }
1559 
1560 static int decode_frame(AVCodecContext *avctx, void *data,
1561  int *got_frame, AVPacket *avpkt)
1562 {
1563  EXRContext *s = avctx->priv_data;
1564  ThreadFrame frame = { .f = data };
1565  AVFrame *picture = data;
1566  uint8_t *ptr;
1567 
1568  int y, ret;
1569  int out_line_size;
1570  int nb_blocks;/* nb scanline or nb tile */
1571 
1572  bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1573 
1574  if ((ret = decode_header(s)) < 0)
1575  return ret;
1576 
1577  switch (s->pixel_type) {
1578  case EXR_FLOAT:
1579  case EXR_HALF:
1580  if (s->channel_offsets[3] >= 0)
1581  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1582  else
1583  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1584  break;
1585  case EXR_UINT:
1586  avpriv_request_sample(avctx, "32-bit unsigned int");
1587  return AVERROR_PATCHWELCOME;
1588  default:
1589  av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1590  return AVERROR_INVALIDDATA;
1591  }
1592 
1594  avctx->color_trc = s->apply_trc_type;
1595 
1596  switch (s->compression) {
1597  case EXR_RAW:
1598  case EXR_RLE:
1599  case EXR_ZIP1:
1600  s->scan_lines_per_block = 1;
1601  break;
1602  case EXR_PXR24:
1603  case EXR_ZIP16:
1604  s->scan_lines_per_block = 16;
1605  break;
1606  case EXR_PIZ:
1607  case EXR_B44:
1608  case EXR_B44A:
1609  s->scan_lines_per_block = 32;
1610  break;
1611  default:
1612  avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1613  return AVERROR_PATCHWELCOME;
1614  }
1615 
1616  /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1617  * the actual image size. */
1618  if (s->xmin > s->xmax ||
1619  s->ymin > s->ymax ||
1620  s->xdelta != s->xmax - s->xmin + 1 ||
1621  s->xmax >= s->w ||
1622  s->ymax >= s->h) {
1623  av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1624  return AVERROR_INVALIDDATA;
1625  }
1626 
1627  if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1628  return ret;
1629 
1630  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1631  if (!s->desc)
1632  return AVERROR_INVALIDDATA;
1633  out_line_size = avctx->width * 2 * s->desc->nb_components;
1634 
1635  if (s->is_tile) {
1636  nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1637  ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1638  } else { /* scanline */
1639  nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1641  }
1642 
1643  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1644  return ret;
1645 
1646  if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1647  return AVERROR_INVALIDDATA;
1648 
1649  // save pointer we are going to use in decode_block
1650  s->buf = avpkt->data;
1651  s->buf_size = avpkt->size;
1652  ptr = picture->data[0];
1653 
1654  // Zero out the start if ymin is not 0
1655  for (y = 0; y < s->ymin; y++) {
1656  memset(ptr, 0, out_line_size);
1657  ptr += picture->linesize[0];
1658  }
1659 
1660  s->picture = picture;
1661 
1662  avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1663 
1664  // Zero out the end if ymax+1 is not h
1665  for (y = s->ymax + 1; y < avctx->height; y++) {
1666  memset(ptr, 0, out_line_size);
1667  ptr += picture->linesize[0];
1668  }
1669 
1670  picture->pict_type = AV_PICTURE_TYPE_I;
1671  *got_frame = 1;
1672 
1673  return avpkt->size;
1674 }
1675 
1677 {
1678  EXRContext *s = avctx->priv_data;
1679  uint32_t i;
1680  union av_intfloat32 t;
1681  float one_gamma = 1.0f / s->gamma;
1682  avpriv_trc_function trc_func = NULL;
1683 
1684  s->avctx = avctx;
1685 
1687  if (trc_func) {
1688  for (i = 0; i < 65536; ++i) {
1689  t = exr_half2float(i);
1690  t.f = trc_func(t.f);
1691  s->gamma_table[i] = exr_flt2uint(t.i);
1692  }
1693  } else {
1694  if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1695  for (i = 0; i < 65536; ++i)
1696  s->gamma_table[i] = exr_halflt2uint(i);
1697  } else {
1698  for (i = 0; i < 65536; ++i) {
1699  t = exr_half2float(i);
1700  /* If negative value we reuse half value */
1701  if (t.f <= 0.0f) {
1702  s->gamma_table[i] = exr_halflt2uint(i);
1703  } else {
1704  t.f = powf(t.f, one_gamma);
1705  s->gamma_table[i] = exr_flt2uint(t.i);
1706  }
1707  }
1708  }
1709  }
1710 
1711  // allocate thread data, used for non EXR_RAW compression types
1713  if (!s->thread_data)
1714  return AVERROR_INVALIDDATA;
1715 
1716  return 0;
1717 }
1718 
1719 #if HAVE_THREADS
1720 static int decode_init_thread_copy(AVCodecContext *avctx)
1721 { EXRContext *s = avctx->priv_data;
1722 
1723  // allocate thread data, used for non EXR_RAW compression types
1725  if (!s->thread_data)
1726  return AVERROR_INVALIDDATA;
1727 
1728  return 0;
1729 }
1730 #endif
1731 
1733 {
1734  EXRContext *s = avctx->priv_data;
1735  int i;
1736  for (i = 0; i < avctx->thread_count; i++) {
1737  EXRThreadData *td = &s->thread_data[i];
1739  av_freep(&td->tmp);
1740  av_freep(&td->bitmap);
1741  av_freep(&td->lut);
1742  }
1743 
1744  av_freep(&s->thread_data);
1745  av_freep(&s->channels);
1746 
1747  return 0;
1748 }
1749 
1750 #define OFFSET(x) offsetof(EXRContext, x)
1751 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1752 static const AVOption options[] = {
1753  { "layer", "Set the decoding layer", OFFSET(layer),
1754  AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1755  { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1756  AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1757 
1758  // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1759  { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1760  AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1761  { "bt709", "BT.709", 0,
1762  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1763  { "gamma", "gamma", 0,
1764  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1765  { "gamma22", "BT.470 M", 0,
1766  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1767  { "gamma28", "BT.470 BG", 0,
1768  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1769  { "smpte170m", "SMPTE 170 M", 0,
1770  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1771  { "smpte240m", "SMPTE 240 M", 0,
1772  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1773  { "linear", "Linear", 0,
1774  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1775  { "log", "Log", 0,
1776  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1777  { "log_sqrt", "Log square root", 0,
1778  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1779  { "iec61966_2_4", "IEC 61966-2-4", 0,
1780  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1781  { "bt1361", "BT.1361", 0,
1782  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1783  { "iec61966_2_1", "IEC 61966-2-1", 0,
1784  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1785  { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1786  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1787  { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1788  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1789  { "smpte2084", "SMPTE ST 2084", 0,
1790  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1791  { "smpte428_1", "SMPTE ST 428-1", 0,
1792  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1793 
1794  { NULL },
1795 };
1796 
1797 static const AVClass exr_class = {
1798  .class_name = "EXR",
1799  .item_name = av_default_item_name,
1800  .option = options,
1801  .version = LIBAVUTIL_VERSION_INT,
1802 };
1803 
1805  .name = "exr",
1806  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1807  .type = AVMEDIA_TYPE_VIDEO,
1808  .id = AV_CODEC_ID_EXR,
1809  .priv_data_size = sizeof(EXRContext),
1810  .init = decode_init,
1811  .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1812  .close = decode_end,
1813  .decode = decode_frame,
1814  .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1816  .priv_class = &exr_class,
1817 };
ITU-R BT2020 for 12-bit system.
Definition: pixfmt.h:424
static uint16_t exr_flt2uint(uint32_t v)
Convert from 32-bit float as uint32_t to uint16_t.
Definition: exr.c:219
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
IEC 61966-2-4.
Definition: pixfmt.h:420
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2222
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
AVOption.
Definition: opt.h:245
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
"Linear transfer characteristics"
Definition: pixfmt.h:417
Definition: exr.c:59
SMPTE ST 428-1.
Definition: pixfmt.h:426
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
Definition: exr.c:347
double(* avpriv_trc_function)(double)
Definition: color_utils.h:40
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:247
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static int init_thread_copy(AVCodecContext *avctx)
Definition: tta.c:390
#define LIBAVUTIL_VERSION_INT
Definition: version.h:70
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:210
const char * g
Definition: vf_curves.c:108
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
Definition: exr.c:54
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
Definition: intfloat.h:40
int channel_offsets[4]
Definition: exr.c:119
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:331
int buf_size
Definition: exr.c:134
int * p
Definition: exr.c:380
uint32_t ymax
Definition: exr.c:124
static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:806
const char * layer
Definition: exr.c:142
int size
Definition: avcodec.h:1581
const char * b
Definition: vf_curves.c:109
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1877
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
Definition: utils.c:120
enum ExrPixelType pixel_type
Definition: exr.c:118
int version
Definition: avisynth_c.h:629
uint64_t_TMPL AV_RL64
Definition: bytestream.h:87
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
Definition: exr.c:1002
#define HALF_FLOAT_MAX_BIASED_EXP
Definition: exr.c:159
uint8_t * bitmap
Definition: exr.c:104
AVCodec.
Definition: avcodec.h:3542
uint8_t * tmp
Definition: exr.c:101
int w
Definition: exr.c:122
AVColorTransferCharacteristic
Color Transfer Characteristic.
Definition: pixfmt.h:408
int lit
Definition: exr.c:379
#define VD
Definition: exr.c:1751
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
const uint8_t * buf
Definition: exr.c:133
Definition: exr.c:377
float gamma
Definition: exr.c:145
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Definition: exr.c:664
AVOptions.
#define HUF_ENCSIZE
Definition: exr.c:373
#define get_code(po, rlc, c, lc, gb, out, oe, outb)
Definition: exr.c:494
Definition: exr.c:67
Multithreading support functions.
#define OFFSET(x)
Definition: exr.c:1750
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:413
static int huf_uncompress(GetByteContext *gb, uint16_t *dst, int dst_size)
Definition: exr.c:586
uint32_t xdelta
Definition: exr.c:125
static int huf_build_dec_table(const uint64_t *hcode, int im, int iM, HufDec *hdecod)
Definition: exr.c:451
static AVFrame * frame
#define get_char(c, lc, gb)
Definition: exr.c:488
Definition: exr.c:85
#define height
Definition: exr.c:56
uint8_t * data
Definition: avcodec.h:1580
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
const uint8_t * buffer
Definition: bytestream.h:34
#define FFMIN3(a, b, c)
Definition: common.h:97
static const AVOption options[]
Definition: exr.c:1752
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:225
AVFrame * picture
Definition: exr.c:114
bitstream reader API header.
uint32_t ymin
Definition: exr.c:124
GetByteContext gb
Definition: exr.c:132
uint32_t ydelta
Definition: exr.c:125
ptrdiff_t size
Definition: opengl_enc.c:101
#define av_log(a,...)
uint8_t * uncompressed_data
Definition: exr.c:98
unsigned m
Definition: audioconvert.c:187
Definition: exr.c:61
#define A_OFFSET
Definition: exr.c:651
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod, GetByteContext *gb, int nbits, int rlc, int no, uint16_t *out)
Definition: exr.c:517
static void predictor(uint8_t *src, int size)
Definition: exr.c:252
#define FLOAT_MAX_BIASED_EXP
Definition: exr.c:157
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define td
Definition: regdef.h:70
ITU-R BT1361 Extended Colour Gamut.
Definition: pixfmt.h:421
int h
Definition: exr.c:122
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
static av_cold int decode_init(AVCodecContext *avctx)
Definition: exr.c:1676
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
const char * r
Definition: vf_curves.c:107
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
Definition: bytestream.h:263
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
AVCodecContext * avctx
Definition: exr.c:115
uint16_t gamma_table[65536]
Definition: exr.c:146
#define t1
Definition: regdef.h:29
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:154
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
Definition: exr.c:264
Definition: graph2dot.c:48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:327
enum AVColorTransferCharacteristic apply_trc_type
Definition: exr.c:144
enum ExrPixelType pixel_type
Definition: exr.c:87
int nb_channels
Definition: exr.c:137
const char * name
Name of the codec implementation.
Definition: avcodec.h:3549
#define LONG_ZEROCODE_RUN
Definition: exr.c:407
GLsizei count
Definition: opengl_enc.c:109
#define fail()
Definition: checkasm.h:81
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:1019
int8_t exp
Definition: eval.c:64
AVCodec ff_exr_decoder
Definition: exr.c:1804
int current_channel_offset
Definition: exr.c:138
#define powf(x, y)
Definition: libm.h:50
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:215
EXRThreadData * thread_data
Definition: exr.c:140
Definition: exr.c:60
static void unpack_3(const uint8_t b[3], uint16_t s[16])
Definition: exr.c:909
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
Definition: rational.c:106
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:258
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP
Definition: exr.c:150
Definition: exr.c:58
int xsub
Definition: exr.c:86
#define FFMIN(a, b)
Definition: common.h:96
int len
Definition: exr.c:378
int32_t xSize
Definition: exr.c:91
uint32_t xmin
Definition: exr.c:123
#define HUF_DECSIZE
Definition: exr.c:374
int width
picture width / height.
Definition: avcodec.h:1836
enum ExrCompr compression
Definition: exr.c:117
static uint16_t exr_halflt2uint(uint16_t v)
Convert from 16-bit float as uint16_t to uint16_t.
Definition: exr.c:239
EXRTileAttribute tile_attr
Definition: exr.c:129
int tmp_size
Definition: exr.c:102
int32_t
static void unpack_14(const uint8_t b[14], uint16_t s[16])
Definition: exr.c:874
uint16_t * lut
Definition: exr.c:105
uint32_t i
Definition: intfloat.h:28
avpriv_trc_function avpriv_get_trc_function_from_trc(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input...
Definition: color_utils.c:170
Definition: exr.c:68
int n
Definition: avisynth_c.h:547
#define src
Definition: vp9dsp.c:530
EXRChannel * channels
Definition: exr.c:136
int uncompressed_size
Definition: exr.c:99
#define HUF_DECBITS
Definition: exr.c:371
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:3079
enum ExrTileLevelMode level_mode
Definition: exr.c:93
#define SHORTEST_LONG_RUN
Definition: exr.c:408
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
Definition: exr.c:1229
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1023
int ysub
Definition: exr.c:86
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:925
#define HUF_DECMASK
Definition: exr.c:375
int ysize
Definition: exr.c:107
also ITU-R BT1361
Definition: pixfmt.h:410
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
Definition: pixfmt.h:415
Libavcodec external API header.
ExrCompr
Definition: exr.c:53
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:215
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:437
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
main external API structure.
Definition: avcodec.h:1649
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void * buf
Definition: avisynth_c.h:553
#define BITMAP_SIZE
Definition: exr.c:345
static int zip_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:284
Describe the class of an AVClass context structure.
Definition: log.h:67
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2371
Definition: exr.c:57
int is_tile
Definition: exr.c:130
float im
Definition: fft.c:73
Not part of ABI.
Definition: pixfmt.h:428
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
Definition: pixfmt.h:419
ExrPixelType
Definition: exr.c:65
Definition: exr.c:55
static av_cold int decode_end(AVCodecContext *avctx)
Definition: exr.c:1732
uint8_t pixel
Definition: tiny_ssim.c:42
static int rle_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:299
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int flags
Definition: cpu.c:47
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
#define SHORT_ZEROCODE_RUN
Definition: exr.c:406
int scan_lines_per_block
Definition: exr.c:127
static union av_intfloat32 exr_half2float(uint16_t hf)
Convert a half float as a uint16_t into a full float.
Definition: exr.c:168
uint32_t xmax
Definition: exr.c:123
IEC 61966-2-1 (sRGB or sYCC)
Definition: pixfmt.h:422
common internal api header.
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:282
void * av_realloc(void *ptr, size_t size)
Allocate or reallocate a block of memory.
Definition: mem.c:145
int channel_line_size
Definition: exr.c:109
SMPTE ST 2084 for 10-, 12-, 14- and 16-bit systems.
Definition: pixfmt.h:425
static double c[64]
also ITU-R BT470BG
Definition: pixfmt.h:414
Definition: exr.c:66
#define MOD_MASK
Definition: exr.c:652
void * priv_data
Definition: avcodec.h:1691
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define av_free(p)
ExrTileLevelRound
Definition: exr.c:79
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:3139
static uint8_t tmp[8]
Definition: des.c:38
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
Definition: exr.c:743
static void huf_canonical_code_table(uint64_t *hcode)
Definition: exr.c:383
ITU-R BT2020 for 10-bit system.
Definition: pixfmt.h:423
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:229
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
Definition: exr.c:362
FILE * out
Definition: movenc.c:54
#define av_freep(p)
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: exr.c:1560
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
Definition: exr.c:637
static int decode_header(EXRContext *s)
Definition: exr.c:1258
int xsize
Definition: exr.c:107
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
Definition: exr.c:654
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *hcode)
Definition: exr.c:411
const AVPixFmtDescriptor * desc
Definition: exr.c:120
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
Definition: bytestream.h:87
This structure stores compressed data.
Definition: avcodec.h:1557
ExrTileLevelMode
Definition: exr.c:72
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:956
Definition: exr.c:62
static const AVClass exr_class
Definition: exr.c:1797
#define t2
Definition: regdef.h:30
#define USHORT_RANGE
Definition: exr.c:344
enum ExrTileLevelRound level_round
Definition: exr.c:94
"Logarithmic transfer characteristic (100:1 range)"
Definition: pixfmt.h:418
int32_t ySize
Definition: exr.c:92