66 #if ARCH_X86_32 && defined(__INTEL_COMPILER)
71 #if HAVE_SSE_INLINE && HAVE_7REGS
76 #define MIX5(mono, stereo) \
78 "movss 0(%1), %%xmm5 \n" \
79 "movss 8(%1), %%xmm6 \n" \
80 "movss 24(%1), %%xmm7 \n" \
81 "shufps $0, %%xmm5, %%xmm5 \n" \
82 "shufps $0, %%xmm6, %%xmm6 \n" \
83 "shufps $0, %%xmm7, %%xmm7 \n" \
85 "movaps (%0, %2), %%xmm0 \n" \
86 "movaps (%0, %3), %%xmm1 \n" \
87 "movaps (%0, %4), %%xmm2 \n" \
88 "movaps (%0, %5), %%xmm3 \n" \
89 "movaps (%0, %6), %%xmm4 \n" \
90 "mulps %%xmm5, %%xmm0 \n" \
91 "mulps %%xmm6, %%xmm1 \n" \
92 "mulps %%xmm5, %%xmm2 \n" \
93 "mulps %%xmm7, %%xmm3 \n" \
94 "mulps %%xmm7, %%xmm4 \n" \
95 stereo("addps %%xmm1, %%xmm0 \n") \
96 "addps %%xmm1, %%xmm2 \n" \
97 "addps %%xmm3, %%xmm0 \n" \
98 "addps %%xmm4, %%xmm2 \n" \
99 mono("addps %%xmm2, %%xmm0 \n") \
100 "movaps %%xmm0, (%0, %2) \n" \
101 stereo("movaps %%xmm2, (%0, %3) \n") \
106 "r"(samples[0] + len), \
107 "r"(samples[1] + len), \
108 "r"(samples[2] + len), \
109 "r"(samples[3] + len), \
110 "r"(samples[4] + len) \
111 : XMM_CLOBBERS("%xmm0", "%xmm1", "%xmm2", "%xmm3", \
112 "%xmm4", "%xmm5", "%xmm6", "%xmm7",) \
116 #define MIX_MISC(stereo) \
120 "mov -%c7(%6, %2, %c8), %3 \n" \
121 "movaps (%3, %0), %%xmm0 \n" \
122 stereo("movaps %%xmm0, %%xmm1 \n") \
123 "mulps %%xmm4, %%xmm0 \n" \
124 stereo("mulps %%xmm5, %%xmm1 \n") \
126 "mov (%6, %2, %c8), %1 \n" \
127 "movaps (%1, %0), %%xmm2 \n" \
128 stereo("movaps %%xmm2, %%xmm3 \n") \
129 "mulps (%4, %2, 8), %%xmm2 \n" \
130 stereo("mulps 16(%4, %2, 8), %%xmm3 \n") \
131 "addps %%xmm2, %%xmm0 \n" \
132 stereo("addps %%xmm3, %%xmm1 \n") \
136 stereo("mov (%6, %2, %c8), %1 \n") \
137 "movaps %%xmm0, (%3, %0) \n" \
138 stereo("movaps %%xmm1, (%1, %0) \n") \
141 : "+&r"(i), "=&r"(j), "=&r"(k), "=&r"(m) \
142 : "r"(matrix_simd + in_ch), \
143 "g"((intptr_t) - 4 * (in_ch - 1)), \
145 "i"(sizeof(float *)), "i"(sizeof(float *)/4) \
149 static void ac3_downmix_sse(
float **samples,
float (*matrix)[2],
150 int out_ch,
int in_ch,
int len)
152 int (*matrix_cmp)[2] = (int(*)[2])matrix;
155 i = -len *
sizeof(float);
156 if (in_ch == 5 && out_ch == 2 &&
157 !(matrix_cmp[0][1] | matrix_cmp[2][0] |
158 matrix_cmp[3][1] | matrix_cmp[4][0] |
159 (matrix_cmp[1][0] ^ matrix_cmp[1][1]) |
160 (matrix_cmp[0][0] ^ matrix_cmp[2][1]))) {
162 }
else if (in_ch == 5 && out_ch == 1 &&
163 matrix_cmp[0][0] == matrix_cmp[2][0] &&
164 matrix_cmp[3][0] == matrix_cmp[4][0]) {
170 for (j = 0; j < in_ch; j++)
171 samp[j] = samples[j] + len;
173 j = 2 * in_ch *
sizeof(float);
177 "movss (%2, %0), %%xmm4 \n"
178 "movss 4(%2, %0), %%xmm5 \n"
179 "shufps $0, %%xmm4, %%xmm4 \n"
180 "shufps $0, %%xmm5, %%xmm5 \n"
181 "movaps %%xmm4, (%1, %0, 4) \n"
182 "movaps %%xmm5, 16(%1, %0, 4) \n"
185 :
"r"(matrix_simd),
"r"(matrix)
237 }
else if (!(cpu_flags & AV_CPU_FLAG_SSE2SLOW)) {
251 #if HAVE_SSE_INLINE && HAVE_7REGS
#define EXTERNAL_MMX(flags)
void(* ac3_rshift_int32)(int32_t *src, unsigned int len, unsigned int shift)
Right-shift each value in an array of int32_t by a specified amount.
void(* float_to_fixed24)(int32_t *dst, const float *src, unsigned int len)
Convert an array of float in range [-1.0,1.0] to int32_t with range [-(1<<24),(1<<24)].
static int shift(int a, int b)
int ff_ac3_max_msb_abs_int16_sse2(const int16_t *src, int len)
Memory handling functions.
int ff_ac3_max_msb_abs_int16_mmx(const int16_t *src, int len)
#define EXTERNAL_SSE(flags)
void ff_float_to_fixed24_3dnow(int32_t *dst, const float *src, unsigned int len)
Macro definitions for various function/variable attributes.
void ff_float_to_fixed24_sse2(int32_t *dst, const float *src, unsigned int len)
void ff_ac3_extract_exponents_ssse3(uint8_t *exp, int32_t *coef, int nb_coefs)
int(* ac3_max_msb_abs_int16)(const int16_t *src, int len)
Calculate the maximum MSB of the absolute value of each element in an array of int16_t.
void ff_ac3_rshift_int32_mmx(int32_t *src, unsigned int len, unsigned int shift)
void ff_ac3_lshift_int16_mmx(int16_t *src, unsigned int len, unsigned int shift)
void ff_ac3_lshift_int16_sse2(int16_t *src, unsigned int len, unsigned int shift)
#define AV_CPU_FLAG_ATOM
Atom processor, some SSSE3 instructions are slower.
#define AV_CPU_FLAG_SSE2SLOW
SSE2 supported, but usually not faster.
#define EXTERNAL_SSE2(flags)
void ff_ac3_exponent_min_sse2(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
void ff_apply_window_int16_ssse3_atom(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
av_cold void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact)
void ff_apply_window_int16_round_mmxext(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
#define AC3_MAX_CHANNELS
maximum number of channels, including coupling channel
void ff_ac3_rshift_int32_sse2(int32_t *src, unsigned int len, unsigned int shift)
static SDL_Window * window
void ff_apply_window_int16_round_sse2(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
int ff_ac3_max_msb_abs_int16_ssse3(const int16_t *src, int len)
void ff_apply_window_int16_sse2(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
#define INLINE_SSE(flags)
void(* extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs)
void ff_ac3_exponent_min_mmx(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
void ff_ac3_exponent_min_mmxext(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
void ff_apply_window_int16_mmxext(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
void ff_apply_window_int16_ssse3(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
int ff_ac3_max_msb_abs_int16_mmxext(const int16_t *src, int len)
void ff_float_to_fixed24_sse(int32_t *dst, const float *src, unsigned int len)
#define EXTERNAL_SSSE3(flags)
void(* apply_window_int16)(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
Apply symmetric window in 16-bit fixed-point.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
int(* compute_mantissa_size)(uint16_t mant_cnt[6][16])
Calculate the number of bits needed to encode a set of mantissas.
#define EXTERNAL_MMXEXT(flags)
#define LOCAL_ALIGNED(a, t, v,...)
void(* ac3_lshift_int16)(int16_t *src, unsigned int len, unsigned int shift)
Left-shift each value in an array of int16_t by a specified amount.
void(* ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
Set each encoded exponent in a block to the minimum of itself and the exponents in the same frequency...
int ff_ac3_compute_mantissa_size_sse2(uint16_t mant_cnt[6][16])
void(* downmix)(float **samples, float(*matrix)[2], int out_ch, int in_ch, int len)
void ff_ac3_extract_exponents_sse2(uint8_t *exp, int32_t *coef, int nb_coefs)
#define EXTERNAL_AMD3DNOW(flags)
Common code between the AC-3 encoder and decoder.