62 #define AMR_BLOCK_SIZE              160    
   63 #define AMR_SAMPLE_BOUND        32768.0   
 
   74 #define AMR_SAMPLE_SCALE  (2.0 / 32768.0) 
   77 #define PRED_FAC_MODE_12k2             0.65 
   79 #define LSF_R_FAC          (8000.0 / 32768.0)  
   80 #define MIN_LSF_SPACING    (50.0488 / 8000.0) 
 
   81 #define PITCH_LAG_MIN_MODE_12k2          18   
 
   84 #define MIN_ENERGY -14.0 
   91 #define SHARP_MAX 0.79449462890625 
   94 #define AMR_TILT_RESPONSE   22 
   96 #define AMR_TILT_GAMMA_T   0.8 
   98 #define AMR_AGC_ALPHA      0.9 
  150                                  const double *in_b, 
double weight_coeff_a,
 
  151                                  double weight_coeff_b, 
int length)
 
  155     for (i = 0; i < 
length; i++)
 
  156         out[i] = weight_coeff_a * in_a[i]
 
  157                + weight_coeff_b * in_b[i];
 
  184     for (i = 0; i < 4; i++)
 
  213     mode = buf[0] >> 3 & 0x0F;                      
 
  243     for (i = 0; i < 4; i++)
 
  245                                 0.25 * (3 - i), 0.25 * (i + 1),
 
  261                                  const float lsf_no_r[LP_FILTER_ORDER],
 
  262                                  const int16_t *lsf_quantizer[5],
 
  263                                  const int quantizer_offset,
 
  264                                  const int sign, 
const int update)
 
  270     for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
 
  271         memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
 
  280         memcpy(p->
prev_lsf_r, lsf_r, LP_FILTER_ORDER * 
sizeof(*lsf_r));
 
  283         lsf_q[i] = lsf_r[i] * (
LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
 
  300     const uint16_t *lsf_param = p->
frame.
lsf;
 
  302     const int16_t *lsf_quantizer[5];
 
  305     lsf_quantizer[0] = 
lsf_5_1[lsf_param[0]];
 
  306     lsf_quantizer[1] = 
lsf_5_2[lsf_param[1]];
 
  307     lsf_quantizer[2] = 
lsf_5_3[lsf_param[2] >> 1];
 
  308     lsf_quantizer[3] = 
lsf_5_4[lsf_param[3]];
 
  309     lsf_quantizer[4] = 
lsf_5_5[lsf_param[4]];
 
  329     const uint16_t *lsf_param = p->
frame.
lsf;
 
  332     const int16_t *lsf_quantizer;
 
  336     memcpy(lsf_r, lsf_quantizer, 3 * 
sizeof(*lsf_r));
 
  339     memcpy(lsf_r + 3, lsf_quantizer, 3 * 
sizeof(*lsf_r));
 
  342     memcpy(lsf_r + 6, lsf_quantizer, 4 * 
sizeof(*lsf_r));
 
  352     memcpy(p->
prev_lsf_r, lsf_r, LP_FILTER_ORDER * 
sizeof(*lsf_r));
 
  357     for (i = 1; i <= 3; i++)
 
  373                                  const int prev_lag_int, 
const int subframe)
 
  375     if (subframe == 0 || subframe == 2) {
 
  376         if (pitch_index < 463) {
 
  377             *lag_int  = (pitch_index + 107) * 10923 >> 16;
 
  378             *lag_frac = pitch_index - *lag_int * 6 + 105;
 
  380             *lag_int  = pitch_index - 368;
 
  384         *lag_int  = ((pitch_index + 5) * 10923 >> 16) - 1;
 
  385         *lag_frac = pitch_index - *lag_int * 6 - 3;
 
  395     int pitch_lag_int, pitch_lag_frac;
 
  413     pitch_lag_int += pitch_lag_frac > 0;
 
  420                           pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
 
  436                                int i1, 
int i2, 
int i3)
 
  441     pulse_position[i1] = (positions[2] << 1) + ( code       & 1);
 
  442     pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
 
  443     pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
 
  456     int pulse_position[8];
 
  464     temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
 
  465     pulse_position[3] = temp % 5;
 
  466     pulse_position[7] = temp / 5;
 
  467     if (pulse_position[7] & 1)
 
  468         pulse_position[3] = 4 - pulse_position[3];
 
  469     pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6]       & 1);
 
  470     pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
 
  473     for (i = 0; i < 4; i++) {
 
  474         const int pos1   = (pulse_position[i]     << 2) + i;
 
  475         const int pos2   = (pulse_position[i + 4] << 2) + i;
 
  476         const float sign = fixed_index[i] ? -1.0 : 1.0;
 
  477         fixed_sparse->
x[i    ] = pos1;
 
  478         fixed_sparse->
x[i + 4] = pos2;
 
  479         fixed_sparse->
y[i    ] = sign;
 
  480         fixed_sparse->
y[i + 4] = pos2 < pos1 ? -sign : sign;
 
  500                                 const enum Mode mode, 
const int subframe)
 
  509         int *pulse_position = fixed_sparse->
x;
 
  511         const int fixed_index = pulses[0];
 
  514             pulse_subset      = ((fixed_index >> 3) & 8)     + (subframe << 1);
 
  515             pulse_position[0] = ( fixed_index       & 7) * 5 + 
track_position[pulse_subset];
 
  516             pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + 
track_position[pulse_subset + 1];
 
  519             pulse_subset      = ((fixed_index & 1) << 1) + 1;
 
  520             pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
 
  521             pulse_subset      = (fixed_index  >> 4) & 3;
 
  522             pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
 
  523             fixed_sparse->
n = pulse_position[0] == pulse_position[1] ? 1 : 2;
 
  525             pulse_position[0] = (fixed_index        & 7) * 5;
 
  526             pulse_subset      = (fixed_index  >> 2) & 2;
 
  527             pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
 
  528             pulse_subset      = (fixed_index  >> 6) & 2;
 
  529             pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
 
  533             pulse_position[1] = 
gray_decode[(fixed_index >> 3)  & 7] + 1;
 
  534             pulse_position[2] = 
gray_decode[(fixed_index >> 6)  & 7] + 2;
 
  535             pulse_subset      = (fixed_index >> 9) & 1;
 
  536             pulse_position[3] = 
gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
 
  539         for (i = 0; i < fixed_sparse->
n; i++)
 
  540             fixed_sparse->
y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
 
  589                                const float *lsf_avg, 
const enum Mode mode)
 
  595         diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
 
  611         const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
 
  616                (1.0 - smoothing_factor) * fixed_gain_mean;
 
  631                          const enum Mode mode, 
const int subframe,
 
  632                          float *fixed_gain_factor)
 
  640         const uint16_t *gains;
 
  651         p->
pitch_gain[4]   = gains[0] * (1.0 / 16384.0);
 
  652         *fixed_gain_factor = gains[1] * (1.0 /  4096.0);
 
  685         if (lag < AMR_SUBFRAME_SIZE >> 1)
 
  691     for (i = 0; i < in->
n; i++) {
 
  694         const float *filterp;
 
  696         if (x >= AMR_SUBFRAME_SIZE - lag) {
 
  698         } 
else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
 
  720                                     const float *fixed_vector,
 
  721                                     float fixed_gain, 
float *
out)
 
  741         for (i = 0; i < 5; i++)
 
  749     } 
else if (ir_filter_nr < 2)
 
  755     if (fixed_gain < 5.0)
 
  759          && ir_filter_nr < 2) {
 
  791                      float fixed_gain, 
const float *fixed_vector,
 
  792                      float *samples, 
uint8_t overflow)
 
  804                             p->
pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
 
  883     memcpy(hf + 1, lpc_n, 
sizeof(
float) * LP_FILTER_ORDER);
 
  913     const float *gamma_n, *gamma_d;                       
 
  925          lpc_n[i] = lpc[i] * gamma_n[i];
 
  926          lpc_d[i] = lpc[i] * gamma_d[i];
 
  929     memcpy(pole_out, p->
postfilter_mem, 
sizeof(
float) * LP_FILTER_ORDER);
 
  933            sizeof(
float) * LP_FILTER_ORDER);
 
  936                                       pole_out + LP_FILTER_ORDER,
 
  949                               int *got_frame_ptr, 
AVPacket *avpkt)
 
  955     int buf_size       = avpkt->
size;
 
  957     int i, subframe, ret;
 
  958     float fixed_gain_factor;
 
  961     float synth_fixed_gain;                  
 
  962     const float *synth_fixed_vector;         
 
  968     buf_out = (
float *)frame->
data[0];
 
  986     for (i = 0; i < 4; i++)
 
  989     for (subframe = 0; subframe < 4; subframe++) {
 
 1002                      &fixed_gain_factor);
 
 1007             av_log(avctx, 
AV_LOG_ERROR, 
"The file is corrupted, pitch_lag = 0 is not allowed\n");
 
 1044                                              synth_fixed_gain, spare_vector);
 
 1054         postfilter(p, p->
lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
 
#define AMR_SAMPLE_SCALE
Scale from constructed speech to [-1,1]. 
void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index, const int prev_lag_int, const int subframe, int third_as_first, int resolution)
Decode the adaptive codebook index to the integer and fractional parts of the pitch lag for one subfr...
#define AMR_BLOCK_SIZE
samples per frame 
#define AVERROR_INVALIDDATA
Invalid data found when processing input. 
This structure describes decoded (raw) audio or video data. 
float lsf_avg[LP_FILTER_ORDER]
vector of averaged lsf vector 
ptrdiff_t const GLvoid * data
void ff_decode_10_pulses_35bits(const int16_t *fixed_index, AMRFixed *fixed_sparse, const uint8_t *gray_decode, int half_pulse_count, int bits)
Decode the algebraic codebook index to pulse positions and signs and construct the algebraic codebook...
static int amrnb_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode, AMRFixed *fixed_sparse)
Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2) 
static av_cold int init(AVCodecContext *avctx)
AMRNB unpacked data frame. 
void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
Clear array values set by set_fixed_vector. 
static const uint8_t base_five_table[128][3]
Base-5 representation for values 0-124. 
static const int8_t pulses[4]
Number of non-zero pulses in the MP-MLQ excitation. 
void(* acelp_apply_order_2_transfer_function)(float *out, const float *in, const float zero_coeffs[2], const float pole_coeffs[2], float gain, float mem[2], int n)
Apply an order 2 rational transfer function in-place. 
static const int16_t lsf_3_1[256][3]
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses, const enum Mode mode, const int subframe)
Decode the algebraic codebook index to pulse positions and signs, then construct the algebraic codebo...
static const uint8_t track_position[16]
track start positions for algebraic code book routines 
uint8_t bad_frame_indicator
bad frame ? 1 : 0 
void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
Add fixed vector to an array from a sparse representation. 
static float fixed_gain_smooth(AMRContext *p, const float *lsf, const float *lsf_avg, const enum Mode mode)
fixed gain smoothing Note that where the spec specifies the "spectrum in the q domain" in section 6...
static const int16_t lsf_3_2[512][3]
float(* dot_productf)(const float *a, const float *b, int length)
Return the dot product. 
static int synthesis(AMRContext *p, float *lpc, float fixed_gain, const float *fixed_vector, float *samples, uint8_t overflow)
Conduct 10th order linear predictive coding synthesis. 
static void weighted_vector_sumd(double *out, const double *in_a, const double *in_b, double weight_coeff_a, double weight_coeff_b, int length)
Double version of ff_weighted_vector_sumf() 
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
static av_cold int amrnb_decode_init(AVCodecContext *avctx)
double prev_lsp_sub4[LP_FILTER_ORDER]
lsp vector for the 4th subframe of the previous frame 
static void postfilter(AMRContext *p, float *lpc, float *buf_out)
Perform adaptive post-filtering to enhance the quality of the speech. 
static const int16_t lsf_5_1[128][4]
float postfilter_agc
previous factor used for adaptive gain control 
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
enum AVSampleFormat sample_fmt
audio sample format 
Sparse representation for the algebraic codebook (fixed) vector. 
static const uint16_t qua_gain_code[32]
scalar quantized fixed gain table for 7.95 and 12.2 kbps modes 
void(* celp_lp_synthesis_filterf)(float *out, const float *filter_coeffs, const float *in, int buffer_length, int filter_length)
LP synthesis filter. 
Mode
Frame type (Table 1a in 3GPP TS 26.101) 
static const uint16_t qua_gain_pit[16]
scalar quantized pitch gain table for 7.95 and 12.2 kbps modes 
static void lsf2lsp_3(AMRContext *p)
Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector. 
static const float energy_pred_fac[4]
4-tap moving average prediction coefficients in reverse order 
uint16_t fixed_gain
index to decode the fixed gain factor, for MODE_12k2 and MODE_7k95 
static const int8_t lsp_sub4_init[LP_FILTER_ORDER]
Values for the lsp vector from the 4th subframe of the previous subframe values. 
double lsp[4][LP_FILTER_ORDER]
lsp vectors from current frame 
static void apply_ir_filter(float *out, const AMRFixed *in, const float *filter)
Circularly convolve a sparse fixed vector with a phase dispersion impulse response filter (D...
AMRNBFrame frame
decoded AMR parameters (lsf coefficients, codebook indexes, etc) 
void ff_adaptive_gain_control(float *out, const float *in, float speech_energ, int size, float alpha, float *gain_mem)
Adaptive gain control (as used in AMR postfiltering) 
static void filter1(SUINT32 *dst, const int32_t *src, int32_t coeff, ptrdiff_t len)
static void ff_amr_bit_reorder(uint16_t *out, int size, const uint8_t *data, const R_TABLE_TYPE *ord_table)
Fill the frame structure variables from bitstream by parsing the given reordering table that uses the...
uint16_t lsf[5]
lsf parameters: 5 parameters for MODE_12k2, only 3 for other modes 
uint8_t prev_ir_filter_nr
previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered. 
static void decode_pitch_vector(AMRContext *p, const AMRNBSubframe *amr_subframe, const int subframe)
static void update_state(AMRContext *p)
Update buffers and history at the end of decoding a subframe. 
static const uint16_t positions[][14][3]
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
float fixed_vector[AMR_SUBFRAME_SIZE]
algebraic codebook (fixed) vector (must be kept zero between frames) 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
AMRNBSubframe subframe[4]
unpacked data for each subframe 
const float ff_pow_0_7[10]
Table of pow(0.7,n) 
simple assert() macros that are a bit more flexible than ISO C assert(). 
const char * name
Name of the codec implementation. 
int16_t prev_lsf_r[LP_FILTER_ORDER]
residual LSF vector from previous subframe 
static const uint8_t frame_sizes_nb[N_MODES]
number of bytes for each mode 
void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in, float sum_of_squares, const int n)
Set the sum of squares of a signal by scaling. 
const float ff_pow_0_75[10]
Table of pow(0.75,n) 
float pitch_gain[5]
quantified pitch gains for the current and previous four subframes 
#define LP_FILTER_ORDER
linear predictive coding filter order 
void(* weighted_vector_sumf)(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length)
float implementation of weighted sum of two vectors. 
static const int16_t lsf_3_3_MODE_5k15[128][4]
float * excitation
pointer to the current excitation vector in excitation_buf 
uint64_t channel_layout
Audio channel layout. 
#define AMR_SAMPLE_BOUND
threshold for synthesis overflow 
uint8_t ir_filter_onset
flag for impulse response filter strength 
static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
Interpolate the LSF vector (used for fixed gain smoothing). 
#define AMR_SUBFRAME_SIZE
samples per subframe 
static const float *const ir_filters_lookup_MODE_7k95[2]
AMRNB unpacked data subframe. 
audio channel layout utility functions 
#define MIN_ENERGY
Initial energy in dB. 
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code. 
static const float highpass_poles[2]
float samples_in[LP_FILTER_ORDER+AMR_SUBFRAME_SIZE]
floating point samples 
static const int16_t lsf_3_1_MODE_7k95[512][3]
static const int16_t lsf_5_5[64][4]
uint16_t p_lag
index to decode the pitch lag 
static av_always_inline av_const float truncf(float x)
static const float highpass_zeros[2]
static const uint16_t gains_MODE_4k75[512][2]
gain table for 4.75 kbps mode 
float pitch_vector[AMR_SUBFRAME_SIZE]
adaptive code book (pitch) vector 
void ff_tilt_compensation(float *mem, float tilt, float *samples, int size)
Apply tilt compensation filter, 1 - tilt * z-1. 
#define MIN_LSF_SPACING
Ensures stability of LPC filter. 
static const float lsf_3_mean[LP_FILTER_ORDER]
void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
Reconstruct LPC coefficients from the line spectral pair frequencies. 
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome. 
static const float * anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse, const float *fixed_vector, float fixed_gain, float *out)
Reduce fixed vector sparseness by smoothing with one of three IR filters. 
uint8_t pitch_lag_int
integer part of pitch lag from current subframe 
#define AV_LOG_INFO
Standard information. 
float tilt_mem
previous input to tilt compensation filter 
float lsf_q[4][LP_FILTER_ORDER]
Interpolated LSF vector for fixed gain smoothing. 
Libavcodec external API header. 
#define PRED_FAC_MODE_12k2
Prediction factor for 12.2kbit/s mode. 
AVSampleFormat
Audio sample formats. 
void ff_celp_circ_addf(float *out, const float *in, const float *lagged, int lag, float fac, int n)
Add an array to a rotated array. 
int sample_rate
samples per second 
float high_pass_mem[2]
previous intermediate values in the high-pass filter 
main external API structure. 
static const float lsf_5_mean[LP_FILTER_ORDER]
uint16_t p_gain
index to decode the pitch gain 
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame. 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void ff_celp_math_init(CELPMContext *c)
Initialize CELPMContext. 
uint8_t diff_count
the number of subframes for which diff has been above 0.65 
static const uint8_t *const amr_unpacking_bitmaps_per_mode[N_MODES]
position of the bitmapping data for each packet type in the AMRNBFrame 
float prediction_error[4]
quantified prediction errors {20log10(^gamma_gc)} for previous four subframes 
void ff_celp_filter_init(CELPFContext *c)
Initialize CELPFContext. 
static const float highpass_gain
static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
Get the tilt factor of a formant filter from its transfer function. 
void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
Floating point version of ff_acelp_lsf2lsp() 
float fixed_gain[5]
quantified fixed gains for the current and previous four subframes 
float lpc[4][LP_FILTER_ORDER]
lpc coefficient vectors for 4 subframes 
float beta
previous pitch_gain, bounded by [0.0,SHARP_MAX] 
#define SHARP_MAX
Maximum sharpening factor. 
#define AMR_TILT_RESPONSE
Number of impulse response coefficients used for tilt factor. 
static const float *const ir_filters_lookup[2]
CELPFContext celpf_ctx
context for filters for CELP-based codecs 
void ff_acelp_vectors_init(ACELPVContext *c)
Initialize ACELPVContext. 
static void decode_8_pulses_31bits(const int16_t *fixed_index, AMRFixed *fixed_sparse)
Decode the algebraic codebook index to pulse positions and signs and construct the algebraic codebook...
static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index, const int prev_lag_int, const int subframe)
Like ff_decode_pitch_lag(), but with 1/6 resolution. 
static const int16_t lsf_5_4[256][4]
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature. 
static void decode_10bit_pulse(int code, int pulse_position[8], int i1, int i2, int i3)
Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame. 
static const int16_t lsf_3_3[512][4]
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes. 
static const int16_t lsf_5_2[256][4]
static const uint8_t gray_decode[8]
3-bit Gray code to binary lookup table 
static const float pred_fac[LP_FILTER_ORDER]
Prediction factor table for modes other than 12.2kbit/s. 
void(* celp_lp_zero_synthesis_filterf)(float *out, const float *filter_coeffs, const float *in, int buffer_length, int filter_length)
LP zero synthesis filter. 
float prev_sparse_fixed_gain
previous fixed gain; used by anti-sparseness processing to determine "onset" 
float postfilter_mem[10]
previous intermediate values in the formant filter 
#define AMR_AGC_ALPHA
Adaptive gain control factor used in post-filter. 
common internal api header. 
common internal and external API header 
static void lsf2lsp_5(AMRContext *p)
Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors. 
static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER], const float lsf_no_r[LP_FILTER_ORDER], const int16_t *lsf_quantizer[5], const int quantizer_offset, const int sign, const int update)
Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector. 
static const uint16_t gains_low[64][2]
gain table for 5.15 and 5.90 kbps modes 
static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe, const enum Mode mode, const int subframe, float *fixed_gain_factor)
Decode pitch gain and fixed gain factor (part of section 6.1.3). 
void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
Adjust the quantized LSFs so they are increasing and not too close. 
void ff_acelp_filter_init(ACELPFContext *c)
Initialize ACELPFContext. 
#define LSF_R_FAC
LSF residual tables to Hertz. 
const float ff_b60_sinc[61]
b60 hamming windowed sinc function coefficients 
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static const uint16_t gains_high[128][2]
gain table for 6.70, 7.40 and 10.2 kbps modes 
uint8_t hang_count
the number of subframes since a hangover period started 
int channels
number of audio channels 
AMR narrowband data and definitions. 
static const float energy_mean[8]
desired mean innovation energy, indexed by active mode 
static enum AVSampleFormat sample_fmts[]
#define PITCH_LAG_MIN_MODE_12k2
Lower bound on decoded lag search in 12.2kbit/s mode. 
CELPMContext celpm_ctx
context for fixed point math operations 
uint16_t pulses[10]
pulses: 10 for MODE_12k2, 7 for MODE_10k2, and index and sign for others 
float excitation_buf[PITCH_DELAY_MAX+LP_FILTER_ORDER+1+AMR_SUBFRAME_SIZE]
current excitation and all necessary excitation history 
static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf, int buf_size)
Unpack an RFC4867 speech frame into the AMR frame mode and parameters. 
#define AV_CH_LAYOUT_MONO
This structure stores compressed data. 
const float ff_pow_0_55[10]
Table of pow(0.55,n) 
ACELPFContext acelpf_ctx
context for filters for ACELP-based codecs 
static const int16_t lsf_5_3[256][4]
#define AMR_TILT_GAMMA_T
Tilt factor = 1st reflection coefficient * gamma_t. 
mode
Use these values in ebur128_init (or'ed). 
int nb_samples
number of audio samples (per channel) described by this frame 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators. 
void(* acelp_interpolatef)(float *out, const float *in, const float *filter_coeffs, int precision, int frac_pos, int filter_length, int length)
Floating point version of ff_acelp_interpolate() 
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy, float *prediction_error, float energy_mean, const float *pred_table)
Calculate fixed gain (part of section 6.1.3 of AMR spec) 
ACELPVContext acelpv_ctx
context for vector operations for ACELP-based codecs 
static const int16_t lsp_avg_init[LP_FILTER_ORDER]
Mean lsp values.