FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
atrac.c
Go to the documentation of this file.
1 /*
2  * common functions for the ATRAC family of decoders
3  *
4  * Copyright (c) 2006-2013 Maxim Poliakovski
5  * Copyright (c) 2006-2008 Benjamin Larsson
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  */
27 
28 #include <math.h>
29 #include <stddef.h>
30 #include <stdio.h>
31 #include <string.h>
32 
33 #include "avcodec.h"
34 #include "atrac.h"
35 
37 static float qmf_window[48];
38 
39 static const float qmf_48tap_half[24] = {
40  -0.00001461907, -0.00009205479,-0.000056157569,0.00030117269,
41  0.0002422519, -0.00085293897,-0.0005205574, 0.0020340169,
42  0.00078333891, -0.0042153862, -0.00075614988, 0.0078402944,
43  -0.000061169922,-0.01344162, 0.0024626821, 0.021736089,
44  -0.007801671, -0.034090221, 0.01880949, 0.054326009,
45  -0.043596379, -0.099384367, 0.13207909, 0.46424159
46 };
47 
49 {
50  int i;
51  float s;
52 
53  /* Generate scale factors */
54  if (!ff_atrac_sf_table[63])
55  for (i=0 ; i<64 ; i++)
56  ff_atrac_sf_table[i] = pow(2.0, (i - 15) / 3.0);
57 
58  /* Generate the QMF window. */
59  if (!qmf_window[47])
60  for (i=0 ; i<24; i++) {
61  s = qmf_48tap_half[i] * 2.0;
62  qmf_window[i] = qmf_window[47 - i] = s;
63  }
64 }
65 
67  int loc_scale)
68 {
69  int i;
70 
71  gctx->loc_scale = loc_scale;
72  gctx->loc_size = 1 << loc_scale;
73  gctx->id2exp_offset = id2exp_offset;
74 
75  /* Generate gain level table. */
76  for (i = 0; i < 16; i++)
77  gctx->gain_tab1[i] = powf(2.0, id2exp_offset - i);
78 
79  /* Generate gain interpolation table. */
80  for (i = -15; i < 16; i++)
81  gctx->gain_tab2[i + 15] = powf(2.0, -1.0f / gctx->loc_size * i);
82 }
83 
84 void ff_atrac_gain_compensation(AtracGCContext *gctx, float *in, float *prev,
85  AtracGainInfo *gc_now, AtracGainInfo *gc_next,
86  int num_samples, float *out)
87 {
88  float lev, gc_scale, gain_inc;
89  int i, pos, lastpos;
90 
91  gc_scale = gc_next->num_points ? gctx->gain_tab1[gc_next->lev_code[0]]
92  : 1.0f;
93 
94  if (!gc_now->num_points) {
95  for (pos = 0; pos < num_samples; pos++)
96  out[pos] = in[pos] * gc_scale + prev[pos];
97  } else {
98  pos = 0;
99 
100  for (i = 0; i < gc_now->num_points; i++) {
101  lastpos = gc_now->loc_code[i] << gctx->loc_scale;
102 
103  lev = gctx->gain_tab1[gc_now->lev_code[i]];
104  gain_inc = gctx->gain_tab2[(i + 1 < gc_now->num_points ? gc_now->lev_code[i + 1]
105  : gctx->id2exp_offset) -
106  gc_now->lev_code[i] + 15];
107 
108  /* apply constant gain level and overlap */
109  for (; pos < lastpos; pos++)
110  out[pos] = (in[pos] * gc_scale + prev[pos]) * lev;
111 
112  /* interpolate between two different gain levels */
113  for (; pos < lastpos + gctx->loc_size; pos++) {
114  out[pos] = (in[pos] * gc_scale + prev[pos]) * lev;
115  lev *= gain_inc;
116  }
117  }
118 
119  for (; pos < num_samples; pos++)
120  out[pos] = in[pos] * gc_scale + prev[pos];
121  }
122 
123  /* copy the overlapping part into the delay buffer */
124  memcpy(prev, &in[num_samples], num_samples * sizeof(float));
125 }
126 
127 void ff_atrac_iqmf(float *inlo, float *inhi, unsigned int nIn, float *pOut,
128  float *delayBuf, float *temp)
129 {
130  int i, j;
131  float *p1, *p3;
132 
133  memcpy(temp, delayBuf, 46*sizeof(float));
134 
135  p3 = temp + 46;
136 
137  /* loop1 */
138  for(i=0; i<nIn; i+=2){
139  p3[2*i+0] = inlo[i ] + inhi[i ];
140  p3[2*i+1] = inlo[i ] - inhi[i ];
141  p3[2*i+2] = inlo[i+1] + inhi[i+1];
142  p3[2*i+3] = inlo[i+1] - inhi[i+1];
143  }
144 
145  /* loop2 */
146  p1 = temp;
147  for (j = nIn; j != 0; j--) {
148  float s1 = 0.0;
149  float s2 = 0.0;
150 
151  for (i = 0; i < 48; i += 2) {
152  s1 += p1[i] * qmf_window[i];
153  s2 += p1[i+1] * qmf_window[i+1];
154  }
155 
156  pOut[0] = s2;
157  pOut[1] = s1;
158 
159  p1 += 2;
160  pOut += 2;
161  }
162 
163  /* Update the delay buffer. */
164  memcpy(delayBuf, temp + nIn*2, 46*sizeof(float));
165 }
else temp
Definition: vf_mcdeint.c:256
void ff_atrac_iqmf(float *inlo, float *inhi, unsigned int nIn, float *pOut, float *delayBuf, float *temp)
Quadrature mirror synthesis filter.
Definition: atrac.c:127
int lev_code[7]
level at corresponding control point
Definition: atrac.h:37
static float qmf_window[48]
Definition: atrac.c:37
float ff_atrac_sf_table[64]
Definition: atrac.c:36
#define av_cold
Definition: attributes.h:82
#define f(width, name)
Definition: cbs_vp9.c:255
ATRAC common header.
float gain_tab1[16]
gain compensation level table
Definition: atrac.h:45
int loc_code[7]
location of gain control points
Definition: atrac.h:38
#define s2
Definition: regdef.h:39
Gain compensation context structure.
Definition: atrac.h:44
av_cold void ff_atrac_init_gain_compensation(AtracGCContext *gctx, int id2exp_offset, int loc_scale)
Initialize gain compensation context.
Definition: atrac.c:66
float gain_tab2[31]
gain compensation interpolation table
Definition: atrac.h:46
#define powf(x, y)
Definition: libm.h:50
int loc_scale
scale of location code = 2^loc_scale samples
Definition: atrac.h:48
#define s(width, name)
Definition: cbs_vp9.c:257
Gain control parameters for one subband.
Definition: atrac.h:35
Libavcodec external API header.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
int loc_size
size of location code in samples
Definition: atrac.h:49
#define s1
Definition: regdef.h:38
int id2exp_offset
offset for converting level index into level exponent
Definition: atrac.h:47
int num_points
number of gain control points
Definition: atrac.h:36
static const float qmf_48tap_half[24]
Definition: atrac.c:39
void ff_atrac_gain_compensation(AtracGCContext *gctx, float *in, float *prev, AtracGainInfo *gc_now, AtracGainInfo *gc_next, int num_samples, float *out)
Apply gain compensation and perform the MDCT overlapping part.
Definition: atrac.c:84
av_cold void ff_atrac_generate_tables(void)
Generate common tables.
Definition: atrac.c:48
FILE * out
Definition: movenc.c:54
for(j=16;j >0;--j)