FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25  * @author Stefan Gehrer <stefan.gehrer@gmx.de>
26  */
27 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "h264chroma.h"
32 #include "idctdsp.h"
33 #include "internal.h"
34 #include "mathops.h"
35 #include "qpeldsp.h"
36 #include "cavs.h"
37 
38 static const uint8_t alpha_tab[64] = {
39  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
40  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
41  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
42  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
43 };
44 
45 static const uint8_t beta_tab[64] = {
46  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
47  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
48  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
49  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
50 };
51 
52 static const uint8_t tc_tab[64] = {
53  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
54  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
55  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
56  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
57 };
58 
59 /** mark block as unavailable, i.e. out of picture
60  * or not yet decoded */
61 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
62 
63 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
64 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
65 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
66 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
67 
68 /*****************************************************************************
69  *
70  * in-loop deblocking filter
71  *
72  ****************************************************************************/
73 
74 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
75 {
76  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
77  return 2;
78  if((abs(mvP->x - mvQ->x) >= 4) ||
79  (abs(mvP->y - mvQ->y) >= 4) ||
80  (mvP->ref != mvQ->ref))
81  return 1;
82  if (b) {
83  mvP += MV_BWD_OFFS;
84  mvQ += MV_BWD_OFFS;
85  if((abs(mvP->x - mvQ->x) >= 4) ||
86  (abs(mvP->y - mvQ->y) >= 4) ||
87  (mvP->ref != mvQ->ref))
88  return 1;
89  }
90  return 0;
91 }
92 
93 #define SET_PARAMS \
94  alpha = alpha_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)]; \
95  beta = beta_tab[av_clip_uintp2(qp_avg + h->beta_offset, 6)]; \
96  tc = tc_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)];
97 
98 /**
99  * in-loop deblocking filter for a single macroblock
100  *
101  * boundary strength (bs) mapping:
102  *
103  * --4---5--
104  * 0 2 |
105  * | 6 | 7 |
106  * 1 3 |
107  * ---------
108  */
109 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
110 {
111  uint8_t bs[8];
112  int qp_avg, alpha, beta, tc;
113  int i;
114 
115  /* save un-deblocked lines */
116  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
117  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
118  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
119  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
120  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
121  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
122  for (i = 0; i < 8; i++) {
123  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
124  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
125  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
126  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
127  }
128  if (!h->loop_filter_disable) {
129  /* determine bs */
130  if (mb_type == I_8X8)
131  memset(bs, 2, 8);
132  else {
133  memset(bs, 0, 8);
134  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
135  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
136  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
137  }
138  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
139  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
140  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
141  }
142  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
143  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
144  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
145  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
146  }
147  if (AV_RN64(bs)) {
148  if (h->flags & A_AVAIL) {
149  qp_avg = (h->qp + h->left_qp + 1) >> 1;
150  SET_PARAMS;
151  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
152  qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->left_qp] + 1) >> 1;
153  SET_PARAMS;
154  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
155  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
156  }
157  qp_avg = h->qp;
158  SET_PARAMS;
159  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
160  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
161 
162  if (h->flags & B_AVAIL) {
163  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
164  SET_PARAMS;
165  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
166  qp_avg = (ff_cavs_chroma_qp[h->qp] + ff_cavs_chroma_qp[h->top_qp[h->mbx]] + 1) >> 1;
167  SET_PARAMS;
168  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
169  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
170  }
171  }
172  }
173  h->left_qp = h->qp;
174  h->top_qp[h->mbx] = h->qp;
175 }
176 
177 #undef SET_PARAMS
178 
179 /*****************************************************************************
180  *
181  * spatial intra prediction
182  *
183  ****************************************************************************/
184 
186  uint8_t **left, int block)
187 {
188  int i;
189 
190  switch (block) {
191  case 0:
192  *left = h->left_border_y;
193  h->left_border_y[0] = h->left_border_y[1];
194  memset(&h->left_border_y[17], h->left_border_y[16], 9);
195  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
196  top[17] = top[16];
197  top[0] = top[1];
198  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
199  h->left_border_y[0] = top[0] = h->topleft_border_y;
200  break;
201  case 1:
202  *left = h->intern_border_y;
203  for (i = 0; i < 8; i++)
204  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
205  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
206  h->intern_border_y[0] = h->intern_border_y[1];
207  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
208  if (h->flags & C_AVAIL)
209  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
210  else
211  memset(&top[9], top[8], 9);
212  top[17] = top[16];
213  top[0] = top[1];
214  if (h->flags & B_AVAIL)
215  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
216  break;
217  case 2:
218  *left = &h->left_border_y[8];
219  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
220  top[17] = top[16];
221  top[0] = top[1];
222  if (h->flags & A_AVAIL)
223  top[0] = h->left_border_y[8];
224  break;
225  case 3:
226  *left = &h->intern_border_y[8];
227  for (i = 0; i < 8; i++)
228  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
229  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
230  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
231  memset(&top[9], top[8], 9);
232  break;
233  }
234 }
235 
237 {
238  /* extend borders by one pixel */
239  h->left_border_u[9] = h->left_border_u[8];
240  h->left_border_v[9] = h->left_border_v[8];
241  if(h->flags & C_AVAIL) {
242  h->top_border_u[h->mbx*10 + 9] = h->top_border_u[h->mbx*10 + 11];
243  h->top_border_v[h->mbx*10 + 9] = h->top_border_v[h->mbx*10 + 11];
244  } else {
245  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
246  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
247  }
248  if((h->flags & A_AVAIL) && (h->flags & B_AVAIL)) {
249  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
250  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
251  } else {
252  h->left_border_u[0] = h->left_border_u[1];
253  h->left_border_v[0] = h->left_border_v[1];
254  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
255  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
256  }
257 }
258 
259 static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
260 {
261  int y;
262  uint64_t a = AV_RN64(&top[1]);
263  for (y = 0; y < 8; y++)
264  *((uint64_t *)(d + y * stride)) = a;
265 }
266 
267 static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
268 {
269  int y;
270  uint64_t a;
271  for (y = 0; y < 8; y++) {
272  a = left[y + 1] * 0x0101010101010101ULL;
273  *((uint64_t *)(d + y * stride)) = a;
274  }
275 }
276 
277 static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
278 {
279  int y;
280  uint64_t a = 0x8080808080808080ULL;
281  for (y = 0; y < 8; y++)
282  *((uint64_t *)(d + y * stride)) = a;
283 }
284 
285 static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
286 {
287  int x, y, ia;
288  int ih = 0;
289  int iv = 0;
290  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
291 
292  for (x = 0; x < 4; x++) {
293  ih += (x + 1) * (top[5 + x] - top[3 - x]);
294  iv += (x + 1) * (left[5 + x] - left[3 - x]);
295  }
296  ia = (top[8] + left[8]) << 4;
297  ih = (17 * ih + 16) >> 5;
298  iv = (17 * iv + 16) >> 5;
299  for (y = 0; y < 8; y++)
300  for (x = 0; x < 8; x++)
301  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
302 }
303 
304 #define LOWPASS(ARRAY, INDEX) \
305  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
306 
307 static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
308 {
309  int x, y;
310  for (y = 0; y < 8; y++)
311  for (x = 0; x < 8; x++)
312  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
313 }
314 
315 static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
316 {
317  int x, y;
318  for (y = 0; y < 8; y++)
319  for (x = 0; x < 8; x++)
320  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
321 }
322 
323 static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
324 {
325  int x, y;
326  for (y = 0; y < 8; y++)
327  for (x = 0; x < 8; x++)
328  if (x == y)
329  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
330  else if (x > y)
331  d[y * stride + x] = LOWPASS(top, x - y);
332  else
333  d[y * stride + x] = LOWPASS(left, y - x);
334 }
335 
336 static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
337 {
338  int x, y;
339  for (y = 0; y < 8; y++)
340  for (x = 0; x < 8; x++)
341  d[y * stride + x] = LOWPASS(left, y + 1);
342 }
343 
344 static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
345 {
346  int x, y;
347  for (y = 0; y < 8; y++)
348  for (x = 0; x < 8; x++)
349  d[y * stride + x] = LOWPASS(top, x + 1);
350 }
351 
352 #undef LOWPASS
353 
354 static inline void modify_pred(const int8_t *mod_table, int *mode)
355 {
356  *mode = mod_table[*mode];
357  if (*mode < 0) {
358  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
359  *mode = 0;
360  }
361 }
362 
363 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
364 {
365  /* save pred modes before they get modified */
366  h->pred_mode_Y[3] = h->pred_mode_Y[5];
367  h->pred_mode_Y[6] = h->pred_mode_Y[8];
368  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
369  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
370 
371  /* modify pred modes according to availability of neighbour samples */
372  if (!(h->flags & A_AVAIL)) {
375  modify_pred(left_modifier_c, pred_mode_uv);
376  }
377  if (!(h->flags & B_AVAIL)) {
380  modify_pred(top_modifier_c, pred_mode_uv);
381  }
382 }
383 
384 /*****************************************************************************
385  *
386  * motion compensation
387  *
388  ****************************************************************************/
389 
390 static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
391  int delta, int list, uint8_t *dest_y,
392  uint8_t *dest_cb, uint8_t *dest_cr,
393  int src_x_offset, int src_y_offset,
394  qpel_mc_func *qpix_op,
395  h264_chroma_mc_func chroma_op, cavs_vector *mv)
396 {
397  const int mx = mv->x + src_x_offset * 8;
398  const int my = mv->y + src_y_offset * 8;
399  const int luma_xy = (mx & 3) + ((my & 3) << 2);
400  uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
401  uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
402  uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
403  int extra_width = 0;
404  int extra_height = extra_width;
405  const int full_mx = mx >> 2;
406  const int full_my = my >> 2;
407  const int pic_width = 16 * h->mb_width;
408  const int pic_height = 16 * h->mb_height;
409  int emu = 0;
410 
411  if (!pic->data[0])
412  return;
413  if (mx & 7)
414  extra_width -= 3;
415  if (my & 7)
416  extra_height -= 3;
417 
418  if (full_mx < 0 - extra_width ||
419  full_my < 0 - extra_height ||
420  full_mx + 16 /* FIXME */ > pic_width + extra_width ||
421  full_my + 16 /* FIXME */ > pic_height + extra_height) {
423  src_y - 2 - 2 * h->l_stride,
424  h->l_stride, h->l_stride,
425  16 + 5, 16 + 5 /* FIXME */,
426  full_mx - 2, full_my - 2,
427  pic_width, pic_height);
428  src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
429  emu = 1;
430  }
431 
432  // FIXME try variable height perhaps?
433  qpix_op[luma_xy](dest_y, src_y, h->l_stride);
434 
435  if (emu) {
436  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
437  h->c_stride, h->c_stride,
438  9, 9 /* FIXME */,
439  mx >> 3, my >> 3,
440  pic_width >> 1, pic_height >> 1);
441  src_cb = h->edge_emu_buffer;
442  }
443  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
444 
445  if (emu) {
446  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
447  h->c_stride, h->c_stride,
448  9, 9 /* FIXME */,
449  mx >> 3, my >> 3,
450  pic_width >> 1, pic_height >> 1);
451  src_cr = h->edge_emu_buffer;
452  }
453  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
454 }
455 
456 static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
457  uint8_t *dest_y,
458  uint8_t *dest_cb,
459  uint8_t *dest_cr,
460  int x_offset, int y_offset,
461  qpel_mc_func *qpix_put,
462  h264_chroma_mc_func chroma_put,
463  qpel_mc_func *qpix_avg,
464  h264_chroma_mc_func chroma_avg,
465  cavs_vector *mv)
466 {
467  qpel_mc_func *qpix_op = qpix_put;
468  h264_chroma_mc_func chroma_op = chroma_put;
469 
470  dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
471  dest_cb += x_offset + y_offset * h->c_stride;
472  dest_cr += x_offset + y_offset * h->c_stride;
473  x_offset += 8 * h->mbx;
474  y_offset += 8 * h->mby;
475 
476  if (mv->ref >= 0) {
477  AVFrame *ref = h->DPB[mv->ref].f;
478  mc_dir_part(h, ref, chroma_height, delta, 0,
479  dest_y, dest_cb, dest_cr, x_offset, y_offset,
480  qpix_op, chroma_op, mv);
481 
482  qpix_op = qpix_avg;
483  chroma_op = chroma_avg;
484  }
485 
486  if ((mv + MV_BWD_OFFS)->ref >= 0) {
487  AVFrame *ref = h->DPB[0].f;
488  mc_dir_part(h, ref, chroma_height, delta, 1,
489  dest_y, dest_cb, dest_cr, x_offset, y_offset,
490  qpix_op, chroma_op, mv + MV_BWD_OFFS);
491  }
492 }
493 
494 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
495 {
496  if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
497  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
502  &h->mv[MV_FWD_X0]);
503  } else {
504  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
509  &h->mv[MV_FWD_X0]);
510  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
515  &h->mv[MV_FWD_X1]);
516  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
521  &h->mv[MV_FWD_X2]);
522  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
527  &h->mv[MV_FWD_X3]);
528  }
529 }
530 
531 /*****************************************************************************
532  *
533  * motion vector prediction
534  *
535  ****************************************************************************/
536 
537 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
538  cavs_vector *src, int distp)
539 {
540  int64_t den = h->scale_den[FFMAX(src->ref, 0)];
541  *d_x = (src->x * distp * den + 256 + FF_SIGNBIT(src->x)) >> 9;
542  *d_y = (src->y * distp * den + 256 + FF_SIGNBIT(src->y)) >> 9;
543 }
544 
545 static inline void mv_pred_median(AVSContext *h,
546  cavs_vector *mvP,
547  cavs_vector *mvA,
548  cavs_vector *mvB,
549  cavs_vector *mvC)
550 {
551  int ax, ay, bx, by, cx, cy;
552  int len_ab, len_bc, len_ca, len_mid;
553 
554  /* scale candidates according to their temporal span */
555  scale_mv(h, &ax, &ay, mvA, mvP->dist);
556  scale_mv(h, &bx, &by, mvB, mvP->dist);
557  scale_mv(h, &cx, &cy, mvC, mvP->dist);
558  /* find the geometrical median of the three candidates */
559  len_ab = abs(ax - bx) + abs(ay - by);
560  len_bc = abs(bx - cx) + abs(by - cy);
561  len_ca = abs(cx - ax) + abs(cy - ay);
562  len_mid = mid_pred(len_ab, len_bc, len_ca);
563  if (len_mid == len_ab) {
564  mvP->x = cx;
565  mvP->y = cy;
566  } else if (len_mid == len_bc) {
567  mvP->x = ax;
568  mvP->y = ay;
569  } else {
570  mvP->x = bx;
571  mvP->y = by;
572  }
573 }
574 
576  enum cavs_mv_pred mode, enum cavs_block size, int ref)
577 {
578  cavs_vector *mvP = &h->mv[nP];
579  cavs_vector *mvA = &h->mv[nP-1];
580  cavs_vector *mvB = &h->mv[nP-4];
581  cavs_vector *mvC = &h->mv[nC];
582  const cavs_vector *mvP2 = NULL;
583 
584  mvP->ref = ref;
585  mvP->dist = h->dist[mvP->ref];
586  if (mvC->ref == NOT_AVAIL || (nP == MV_FWD_X3) || (nP == MV_BWD_X3 ))
587  mvC = &h->mv[nP - 5]; // set to top-left (mvD)
588  if (mode == MV_PRED_PSKIP &&
589  (mvA->ref == NOT_AVAIL ||
590  mvB->ref == NOT_AVAIL ||
591  (mvA->x | mvA->y | mvA->ref) == 0 ||
592  (mvB->x | mvB->y | mvB->ref) == 0)) {
593  mvP2 = &un_mv;
594  /* if there is only one suitable candidate, take it */
595  } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
596  mvP2 = mvA;
597  } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
598  mvP2 = mvB;
599  } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
600  mvP2 = mvC;
601  } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
602  mvP2 = mvA;
603  } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
604  mvP2 = mvB;
605  } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
606  mvP2 = mvC;
607  }
608  if (mvP2) {
609  mvP->x = mvP2->x;
610  mvP->y = mvP2->y;
611  } else
612  mv_pred_median(h, mvP, mvA, mvB, mvC);
613 
614  if (mode < MV_PRED_PSKIP) {
615  int mx = get_se_golomb(&h->gb) + (unsigned)mvP->x;
616  int my = get_se_golomb(&h->gb) + (unsigned)mvP->y;
617 
618  if (mx != (int16_t)mx || my != (int16_t)my) {
619  av_log(h->avctx, AV_LOG_ERROR, "MV %d %d out of supported range\n", mx, my);
620  } else {
621  mvP->x = mx;
622  mvP->y = my;
623  }
624  }
625  set_mvs(mvP, size);
626 }
627 
628 /*****************************************************************************
629  *
630  * macroblock level
631  *
632  ****************************************************************************/
633 
634 /**
635  * initialise predictors for motion vectors and intra prediction
636  */
638 {
639  int i;
640 
641  /* copy predictors from top line (MB B and C) into cache */
642  for (i = 0; i < 3; i++) {
643  h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
644  h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
645  }
646  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
647  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
648  /* clear top predictors if MB B is not available */
649  if (!(h->flags & B_AVAIL)) {
650  h->mv[MV_FWD_B2] = un_mv;
651  h->mv[MV_FWD_B3] = un_mv;
652  h->mv[MV_BWD_B2] = un_mv;
653  h->mv[MV_BWD_B3] = un_mv;
654  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
655  h->flags &= ~(C_AVAIL | D_AVAIL);
656  } else if (h->mbx) {
657  h->flags |= D_AVAIL;
658  }
659  if (h->mbx == h->mb_width - 1) // MB C not available
660  h->flags &= ~C_AVAIL;
661  /* clear top-right predictors if MB C is not available */
662  if (!(h->flags & C_AVAIL)) {
663  h->mv[MV_FWD_C2] = un_mv;
664  h->mv[MV_BWD_C2] = un_mv;
665  }
666  /* clear top-left predictors if MB D is not available */
667  if (!(h->flags & D_AVAIL)) {
668  h->mv[MV_FWD_D3] = un_mv;
669  h->mv[MV_BWD_D3] = un_mv;
670  }
671 }
672 
673 /**
674  * save predictors for later macroblocks and increase
675  * macroblock address
676  * @return 0 if end of frame is reached, 1 otherwise
677  */
679 {
680  int i;
681 
682  h->flags |= A_AVAIL;
683  h->cy += 16;
684  h->cu += 8;
685  h->cv += 8;
686  /* copy mvs as predictors to the left */
687  for (i = 0; i <= 20; i += 4)
688  h->mv[i] = h->mv[i + 2];
689  /* copy bottom mvs from cache to top line */
690  h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
691  h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
692  h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
693  h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
694  /* next MB address */
695  h->mbidx++;
696  h->mbx++;
697  if (h->mbx == h->mb_width) { // New mb line
698  h->flags = B_AVAIL | C_AVAIL;
699  /* clear left pred_modes */
700  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
701  /* clear left mv predictors */
702  for (i = 0; i <= 20; i += 4)
703  h->mv[i] = un_mv;
704  h->mbx = 0;
705  h->mby++;
706  /* re-calculate sample pointers */
707  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
708  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
709  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
710  if (h->mby == h->mb_height) { // Frame end
711  return 0;
712  }
713  }
714  return 1;
715 }
716 
717 /*****************************************************************************
718  *
719  * frame level
720  *
721  ****************************************************************************/
722 
724 {
725  int i;
726 
727  /* clear some predictors */
728  for (i = 0; i <= 20; i += 4)
729  h->mv[i] = un_mv;
731  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
733  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
734  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
735  h->cy = h->cur.f->data[0];
736  h->cu = h->cur.f->data[1];
737  h->cv = h->cur.f->data[2];
738  h->l_stride = h->cur.f->linesize[0];
739  h->c_stride = h->cur.f->linesize[1];
740  h->luma_scan[2] = 8 * h->l_stride;
741  h->luma_scan[3] = 8 * h->l_stride + 8;
742  h->mbx = h->mby = h->mbidx = 0;
743  h->flags = 0;
744 
745  return 0;
746 }
747 
748 /*****************************************************************************
749  *
750  * headers and interface
751  *
752  ****************************************************************************/
753 
754 /**
755  * some predictions require data from the top-neighbouring macroblock.
756  * this data has to be stored for one complete row of macroblocks
757  * and this storage space is allocated here
758  */
760 {
761  /* alloc top line of predictors */
762  h->top_qp = av_mallocz(h->mb_width);
763  h->top_mv[0] = av_mallocz_array(h->mb_width * 2 + 1, sizeof(cavs_vector));
764  h->top_mv[1] = av_mallocz_array(h->mb_width * 2 + 1, sizeof(cavs_vector));
765  h->top_pred_Y = av_mallocz_array(h->mb_width * 2, sizeof(*h->top_pred_Y));
766  h->top_border_y = av_mallocz_array(h->mb_width + 1, 16);
769 
770  /* alloc space for co-located MVs and types */
772  4 * sizeof(cavs_vector));
774  h->block = av_mallocz(64 * sizeof(int16_t));
775 
776  if (!h->top_qp || !h->top_mv[0] || !h->top_mv[1] || !h->top_pred_Y ||
777  !h->top_border_y || !h->top_border_u || !h->top_border_v ||
778  !h->col_mv || !h->col_type_base || !h->block) {
779  av_freep(&h->top_qp);
780  av_freep(&h->top_mv[0]);
781  av_freep(&h->top_mv[1]);
782  av_freep(&h->top_pred_Y);
783  av_freep(&h->top_border_y);
784  av_freep(&h->top_border_u);
785  av_freep(&h->top_border_v);
786  av_freep(&h->col_mv);
787  av_freep(&h->col_type_base);
788  av_freep(&h->block);
789  return AVERROR(ENOMEM);
790  }
791  return 0;
792 }
793 
795 {
796  AVSContext *h = avctx->priv_data;
797 
798  ff_blockdsp_init(&h->bdsp, avctx);
800  ff_idctdsp_init(&h->idsp, avctx);
801  ff_videodsp_init(&h->vdsp, 8);
802  ff_cavsdsp_init(&h->cdsp, avctx);
804  h->cdsp.idct_perm);
806 
807  h->avctx = avctx;
808  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
809 
810  h->cur.f = av_frame_alloc();
811  h->DPB[0].f = av_frame_alloc();
812  h->DPB[1].f = av_frame_alloc();
813  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
814  ff_cavs_end(avctx);
815  return AVERROR(ENOMEM);
816  }
817 
818  h->luma_scan[0] = 0;
819  h->luma_scan[1] = 8;
835  h->mv[7] = un_mv;
836  h->mv[19] = un_mv;
837  return 0;
838 }
839 
841 {
842  AVSContext *h = avctx->priv_data;
843 
844  av_frame_free(&h->cur.f);
845  av_frame_free(&h->DPB[0].f);
846  av_frame_free(&h->DPB[1].f);
847 
848  av_freep(&h->top_qp);
849  av_freep(&h->top_mv[0]);
850  av_freep(&h->top_mv[1]);
851  av_freep(&h->top_pred_Y);
852  av_freep(&h->top_border_y);
853  av_freep(&h->top_border_u);
854  av_freep(&h->top_border_v);
855  av_freep(&h->col_mv);
856  av_freep(&h->col_type_base);
857  av_freep(&h->block);
859  return 0;
860 }
cavs_mv_loc
Definition: cavs.h:120
uint8_t * top_border_v
Definition: cavs.h:225
uint8_t * top_border_u
Definition: cavs.h:225
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
Definition: cavs.c:363
uint8_t topleft_border_y
Definition: cavs.h:228
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
AVCodecContext * avctx
Definition: cavs.h:164
This structure describes decoded (raw) audio or video data.
Definition: frame.h:226
uint8_t * edge_emu_buffer
Definition: cavs.h:239
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:237
static int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
Definition: cavs.c:74
static const int8_t left_modifier_c[7]
Definition: cavs.c:65
Definition: cavs.h:62
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
Definition: h264chroma.h:25
int16_t x
Definition: cavs.h:144
av_cold int ff_cavs_end(AVCodecContext *avctx)
Definition: cavs.c:840
int mbidx
macroblock coordinates
Definition: cavs.h:186
const uint8_t ff_cavs_chroma_qp[64]
Definition: cavsdata.c:57
h264_chroma_mc_func put_h264_chroma_pixels_tab[4]
Definition: h264chroma.h:28
cavs_vector * col_mv
Definition: cavs.h:207
const char * b
Definition: vf_curves.c:116
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:60
#define MAX_NEG_CROP
Definition: mathops.h:31
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1743
#define tc
Definition: regdef.h:69
#define A_AVAIL
Definition: cavs.h:39
void ff_cavs_init_mb(AVSContext *h)
initialise predictors for motion vectors and intra prediction
Definition: cavs.c:637
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
int qp
Definition: cavs.h:217
int loop_filter_disable
Definition: cavs.h:183
#define src
Definition: vp8dsp.c:254
int left_qp
Definition: cavs.h:190
static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:267
uint8_t intern_border_y[26]
Definition: cavs.h:227
cavs_mb
Definition: cavs.h:61
static int16_t block[64]
Definition: dct.c:115
#define MV_BWD_OFFS
Definition: cavs.h:58
int mbx
Definition: cavs.h:186
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:344
ScanTable scantable
Definition: cavs.h:221
uint8_t
#define av_cold
Definition: attributes.h:82
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:189
float delta
#define SPLITH
Definition: cavs.h:55
uint8_t * top_qp
Definition: cavs.h:191
static const int8_t left_modifier_l[8]
Definition: cavs.c:63
uint8_t * top_border_y
intra prediction is done with un-deblocked samples they are saved here before deblocking the MB ...
Definition: cavs.h:225
av_cold void ff_cavsdsp_init(CAVSDSPContext *c, AVCodecContext *avctx)
Definition: cavsdsp.c:551
cavs_vector mv[2 *4 *3]
mv motion vector cache 0: D3 B2 B3 C2 4: A1 X0 X1 - 8: A3 X2 X3 -
Definition: cavs.h:205
quarterpel DSP functions
cavs_vector * top_mv[2]
Definition: cavs.h:206
bitstream reader API header.
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
in-loop deblocking filter for a single macroblock
Definition: cavs.c:109
ptrdiff_t size
Definition: opengl_enc.c:101
int dist[2]
temporal distances from current frame to ref frames
Definition: cavs.h:173
int mby
Definition: cavs.h:186
GetBitContext gb
Definition: cavs.h:170
static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:259
uint8_t * cy
Definition: cavs.h:189
#define av_log(a,...)
#define cm
Definition: dvbsubdec.c:37
#define D_AVAIL
Definition: cavs.h:42
static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:285
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:537
uint8_t topleft_border_u
Definition: cavs.h:228
static void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC)
Definition: cavs.c:545
static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:315
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint8_t * cu
Definition: cavs.h:189
Definition: cavs.h:67
int scale_den[2]
for scaling neighbouring MVs
Definition: cavs.h:237
AVSFrame cur
currently decoded frame
Definition: cavs.h:171
#define SET_PARAMS
Definition: cavs.c:93
int ff_cavs_next_mb(AVSContext *h)
save predictors for later macroblocks and increase macroblock address
Definition: cavs.c:678
#define FF_SIGNBIT(x)
Definition: internal.h:88
#define AVERROR(e)
Definition: error.h:43
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
Definition: cavs.c:494
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
CAVSDSPContext cdsp
Definition: cavs.h:169
uint8_t left_border_y[26]
Definition: cavs.h:226
#define C_AVAIL
Definition: cavs.h:41
static const uint8_t beta_tab[64]
Definition: cavs.c:45
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block)
Definition: cavs.c:185
#define FFMAX(a, b)
Definition: common.h:94
AVSFrame DPB[2]
reference frames
Definition: cavs.h:172
static const int8_t top_modifier_c[7]
Definition: cavs.c:66
#define B_AVAIL
Definition: cavs.h:40
uint8_t * cv
current MB sample pointers
Definition: cavs.h:189
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
Definition: cavs.c:236
qpel_mc_func put_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:31
#define NOT_AVAIL
Definition: cavs.h:43
av_cold int ff_cavs_init(AVCodecContext *avctx)
Definition: cavs.c:794
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
Definition: idctdsp.c:50
int16_t dist
Definition: cavs.h:146
uint8_t left_border_u[10]
Definition: cavs.h:226
void(* intra_pred_c[7])(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.h:231
static const uint8_t tc_tab[64]
Definition: cavs.c:52
const uint8_t ff_cavs_partition_flags[30]
Definition: cavsdata.c:24
int16_t * block
Definition: cavs.h:242
int ff_cavs_init_top_lines(AVSContext *h)
some predictions require data from the top-neighbouring macroblock.
Definition: cavs.c:759
const cavs_vector ff_cavs_dir_mv
mark block as "no prediction from this direction" e.g.
Definition: cavsdata.c:66
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:96
uint8_t left_border_v[10]
Definition: cavs.h:226
void(* cavs_filter_lh)(uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:34
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref)
Definition: cavs.c:575
static void modify_pred(const int8_t *mod_table, int *mode)
Definition: cavs.c:354
static const int8_t mv[256][2]
Definition: 4xm.c:77
static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:323
Libavcodec external API header.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:257
static const int16_t alpha[]
Definition: ilbcdata.h:55
main external API structure.
Definition: avcodec.h:1533
static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:307
void(* cavs_filter_ch)(uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:36
static void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv)
Definition: cavs.c:390
static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:277
int pred_mode_Y[3 *3]
luma pred mode cache 0: – B2 B3 3: A1 X0 X1 6: A3 X2 X3
Definition: cavs.h:213
cavs_block
Definition: cavs.h:113
#define SPLITV
Definition: cavs.h:56
int * top_pred_Y
Definition: cavs.h:214
int idct_perm
Definition: cavsdsp.h:38
int16_t ref
Definition: cavs.h:147
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
#define mid_pred
Definition: mathops.h:97
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:32
ptrdiff_t c_stride
Definition: cavs.h:215
void(* cavs_filter_lv)(uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:33
#define LOWPASS(ARRAY, INDEX)
Definition: cavs.c:304
uint8_t topleft_border_v
Definition: cavs.h:228
BlockDSPContext bdsp
Definition: cavs.h:165
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.c:336
static const int8_t top_modifier_l[8]
Definition: cavs.c:64
cavs_mv_pred
Definition: cavs.h:104
int flags
availability flags of neighbouring macroblocks
Definition: cavs.h:187
ptrdiff_t l_stride
Definition: cavs.h:215
#define ff_crop_tab
int luma_scan[4]
Definition: cavs.h:216
int mb_height
Definition: cavs.h:177
h264_chroma_mc_func avg_h264_chroma_pixels_tab[4]
Definition: h264chroma.h:29
void * priv_data
Definition: avcodec.h:1560
int ff_cavs_init_pic(AVSContext *h)
Definition: cavs.c:723
av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
Definition: idctdsp.c:29
#define REF_INTRA
Definition: cavs.h:44
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
Definition: idctdsp.c:238
#define AV_RN64(p)
Definition: intreadwrite.h:368
static const cavs_vector un_mv
mark block as unavailable, i.e.
Definition: cavs.c:61
#define av_freep(p)
static void set_mvs(cavs_vector *mv, enum cavs_block size)
Definition: cavs.h:250
IDCTDSPContext idsp
Definition: cavs.h:167
int16_t y
Definition: cavs.h:145
void(* intra_pred_l[8])(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
Definition: cavs.h:230
VideoDSPContext vdsp
Definition: cavs.h:168
exp golomb vlc stuff
H264ChromaContext h264chroma
Definition: cavs.h:166
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
static const uint8_t alpha_tab[64]
Definition: cavs.c:38
int mb_width
Definition: cavs.h:177
AVFrame * f
Definition: cavs.h:159
void(* cavs_filter_cv)(uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:35
uint8_t * col_type_base
Definition: cavs.h:232
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:191
static void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv)
Definition: cavs.c:456