Go to the documentation of this file.
  150 #define FULLPEL_MODE  1 
  151 #define HALFPEL_MODE  2 
  152 #define THIRDPEL_MODE 3 
  153 #define PREDICT_MODE  4 
  165     0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
 
  166     2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
 
  167     0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
 
  168     0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
 
  172     0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
 
  173     3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
 
  174     1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
 
  175     3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
 
  181     { 0, 2 }, { 1, 1 }, { 2, 0 },
 
  182     { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
 
  183     { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
 
  184     { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
 
  185     { 2, 4 }, { 3, 3 }, { 4, 2 },
 
  191     { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
 
  192       { 2,  1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
 
  193     { { 0,  2, -1, -1, -1 }, { 0, 2,  1,  4,  3 }, { 0, 1,  2,  4,  3 },
 
  194       { 0,  2,  1,  4,  3 }, { 2, 0,  1,  3,  4 }, { 0, 4,  2,  1,  3 } },
 
  195     { { 2,  0, -1, -1, -1 }, { 2, 1,  0,  4,  3 }, { 1, 2,  4,  0,  3 },
 
  196       { 2,  1,  0,  4,  3 }, { 2, 1,  4,  3,  0 }, { 1, 2,  4,  0,  3 } },
 
  197     { { 2,  0, -1, -1, -1 }, { 2, 0,  1,  4,  3 }, { 1, 2,  0,  4,  3 },
 
  198       { 2,  1,  0,  4,  3 }, { 2, 1,  3,  4,  0 }, { 2, 4,  1,  0,  3 } },
 
  199     { { 0,  2, -1, -1, -1 }, { 0, 2,  1,  3,  4 }, { 1, 2,  3,  0,  4 },
 
  200       { 2,  0,  1,  3,  4 }, { 2, 1,  3,  0,  4 }, { 2, 0,  4,  3,  1 } },
 
  201     { { 0,  2, -1, -1, -1 }, { 0, 2,  4,  1,  3 }, { 1, 4,  2,  0,  3 },
 
  202       { 4,  2,  0,  1,  3 }, { 2, 0,  1,  4,  3 }, { 4, 2,  1,  0,  3 } },
 
  205 static const struct {
 
  209     { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
 
  210       { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
 
  211     { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
 
  212       { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
 
  216      3881,  4351,  4890,  5481,   6154,   6914,   7761,   8718,
 
  217      9781, 10987, 12339, 13828,  15523,  17435,  19561,  21873,
 
  218     24552, 27656, 30847, 34870,  38807,  43747,  49103,  54683,
 
  219     61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
 
  232     for (
i = 0; 
i < 4; 
i++) {
 
  233         const int z0 = 13 * (
input[4 * 
i + 0] +      
input[4 * 
i + 2]);
 
  234         const int z1 = 13 * (
input[4 * 
i + 0] -      
input[4 * 
i + 2]);
 
  235         const int z2 =  7 *  
input[4 * 
i + 1] - 17 * 
input[4 * 
i + 3];
 
  236         const int z3 = 17 *  
input[4 * 
i + 1] +  7 * 
input[4 * 
i + 3];
 
  238         temp[4 * 
i + 0] = z0 + z3;
 
  239         temp[4 * 
i + 1] = z1 + z2;
 
  240         temp[4 * 
i + 2] = z1 - z2;
 
  241         temp[4 * 
i + 3] = z0 - z3;
 
  244     for (
i = 0; 
i < 4; 
i++) {
 
  245         const int offset = x_offset[
i];
 
  246         const int z0     = 13 * (
temp[4 * 0 + 
i] +      
temp[4 * 2 + 
i]);
 
  247         const int z1     = 13 * (
temp[4 * 0 + 
i] -      
temp[4 * 2 + 
i]);
 
  248         const int z2     =  7 *  
temp[4 * 1 + 
i] - 17 * 
temp[4 * 3 + 
i];
 
  249         const int z3     = 17 *  
temp[4 * 1 + 
i] +  7 * 
temp[4 * 3 + 
i];
 
  267                                       : qmul * (
block[0] >> 3) / 2);
 
  271     for (
i = 0; 
i < 4; 
i++) {
 
  272         const int z0 = 13 * (
block[0 + 4 * 
i] +      
block[2 + 4 * 
i]);
 
  273         const int z1 = 13 * (
block[0 + 4 * 
i] -      
block[2 + 4 * 
i]);
 
  274         const int z2 =  7 *  
block[1 + 4 * 
i] - 17 * 
block[3 + 4 * 
i];
 
  275         const int z3 = 17 *  
block[1 + 4 * 
i] +  7 * 
block[3 + 4 * 
i];
 
  277         block[0 + 4 * 
i] = z0 + z3;
 
  278         block[1 + 4 * 
i] = z1 + z2;
 
  279         block[2 + 4 * 
i] = z1 - z2;
 
  280         block[3 + 4 * 
i] = z0 - z3;
 
  283     for (
i = 0; 
i < 4; 
i++) {
 
  284         const unsigned z0 = 13 * (
block[
i + 4 * 0] +      
block[
i + 4 * 2]);
 
  285         const unsigned z1 = 13 * (
block[
i + 4 * 0] -      
block[
i + 4 * 2]);
 
  286         const unsigned z2 =  7 *  
block[
i + 4 * 1] - 17 * 
block[
i + 4 * 3];
 
  287         const unsigned z3 = 17 *  
block[
i + 4 * 1] +  7 * 
block[
i + 4 * 3];
 
  288         const int rr = (
dc + 0x80000
u);
 
  290         dst[
i + 
stride * 0] = av_clip_uint8(dst[
i + 
stride * 0] + ((
int)((z0 + z3) * qmul + rr) >> 20));
 
  291         dst[
i + 
stride * 1] = av_clip_uint8(dst[
i + 
stride * 1] + ((
int)((z1 + z2) * qmul + rr) >> 20));
 
  292         dst[
i + 
stride * 2] = av_clip_uint8(dst[
i + 
stride * 2] + ((
int)((z1 - z2) * qmul + rr) >> 20));
 
  293         dst[
i + 
stride * 3] = av_clip_uint8(dst[
i + 
stride * 3] + ((
int)((z0 - z3) * qmul + rr) >> 20));
 
  296     memset(
block, 0, 16 * 
sizeof(int16_t));
 
  302     static const uint8_t *
const scan_patterns[4] = {
 
  308     const int intra           = 3 * 
type >> 2;
 
  311     for (limit = (16 >> intra); 
index < 16; 
index = limit, limit += 8) {
 
  316             sign     = (vlc & 1) ? 0 : -1;
 
  323                 } 
else if (vlc < 4) {
 
  336                     level = (vlc >> 3) + ((
run == 0) ? 8 : ((
run < 2) ? 2 : ((
run < 5) ? 0 : -1)));
 
  339                     level = (vlc >> 4) + ((
run == 0) ? 4 : ((
run < 3) ? 2 : ((
run < 10) ? 1 : 0)));
 
  360                        int i, 
int list, 
int part_width)
 
  362     const int topright_ref = 
s->ref_cache[
list][
i - 8 + part_width];
 
  365         *
C = 
s->mv_cache[
list][
i - 8 + part_width];
 
  368         *
C = 
s->mv_cache[
list][
i - 8 - 1];
 
  369         return s->ref_cache[
list][
i - 8 - 1];
 
  381                                               int part_width, 
int list,
 
  382                                               int ref, 
int *
const mx, 
int *
const my)
 
  384     const int index8       = 
scan8[
n];
 
  385     const int top_ref      = 
s->ref_cache[
list][index8 - 8];
 
  386     const int left_ref     = 
s->ref_cache[
list][index8 - 1];
 
  387     const int16_t *
const A = 
s->mv_cache[
list][index8 - 1];
 
  388     const int16_t *
const B = 
s->mv_cache[
list][index8 - 8];
 
  390     int diagonal_ref, match_count;
 
  401     match_count  = (diagonal_ref == 
ref) + (top_ref == 
ref) + (left_ref == 
ref);
 
  402     if (match_count > 1) { 
 
  405     } 
else if (match_count == 1) {
 
  406         if (left_ref == 
ref) {
 
  409         } 
else if (top_ref == 
ref) {
 
  431                                     int mx, 
int my, 
int dxy,
 
  432                                     int thirdpel, 
int dir, 
int avg)
 
  434     const SVQ3Frame *pic = (dir == 0) ? 
s->last_pic : 
s->next_pic;
 
  437     int blocksize = 2 - (
width >> 3); 
 
  438     int linesize   = 
s->cur_pic->f->linesize[0];
 
  439     int uvlinesize = 
s->cur_pic->f->linesize[1];
 
  444     if (mx < 0 || mx >= 
s->h_edge_pos - 
width  - 1 ||
 
  445         my < 0 || my >= 
s->v_edge_pos - 
height - 1) {
 
  447         mx = av_clip(mx, -16, 
s->h_edge_pos - 
width  + 15);
 
  448         my = av_clip(my, -16, 
s->v_edge_pos - 
height + 15);
 
  452     dest = 
s->cur_pic->f->data[0] + x + y * linesize;
 
  453     src  = pic->
f->
data[0] + mx + my * linesize;
 
  456         s->vdsp.emulated_edge_mc(
s->edge_emu_buffer, 
src,
 
  459                                  mx, my, 
s->h_edge_pos, 
s->v_edge_pos);
 
  460         src = 
s->edge_emu_buffer;
 
  463         (
avg ? 
s->tdsp.avg_tpel_pixels_tab
 
  464              : 
s->tdsp.put_tpel_pixels_tab)[dxy](dest, 
src, linesize,
 
  467         (
avg ? 
s->hdsp.avg_pixels_tab
 
  468              : 
s->hdsp.put_pixels_tab)[blocksize][dxy](dest, 
src, linesize,
 
  472         mx     = mx + (mx < (
int) x) >> 1;
 
  473         my     = my + (my < (
int) y) >> 1;
 
  478         for (
i = 1; 
i < 3; 
i++) {
 
  479             dest = 
s->cur_pic->f->data[
i] + (x >> 1) + (y >> 1) * uvlinesize;
 
  480             src  = pic->
f->
data[
i] + mx + my * uvlinesize;
 
  483                 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer, 
src,
 
  484                                          uvlinesize, uvlinesize,
 
  486                                          mx, my, (
s->h_edge_pos >> 1),
 
  488                 src = 
s->edge_emu_buffer;
 
  491                 (
avg ? 
s->tdsp.avg_tpel_pixels_tab
 
  492                      : 
s->tdsp.put_tpel_pixels_tab)[dxy](dest, 
src,
 
  496                 (
avg ? 
s->hdsp.avg_pixels_tab
 
  497                      : 
s->hdsp.put_pixels_tab)[blocksize][dxy](dest, 
src,
 
  507     int i, j, k, mx, my, dx, dy, x, y;
 
  508     const int part_width    = ((
size & 5) == 4) ? 4 : 16 >> (
size & 1);
 
  509     const int part_height   = 16 >> ((unsigned)(
size + 1) / 3);
 
  511     const int h_edge_pos    = 6 * (
s->h_edge_pos - part_width)  - extra_width;
 
  512     const int v_edge_pos    = 6 * (
s->v_edge_pos - part_height) - extra_width;
 
  514     for (
i = 0; 
i < 16; 
i += part_height)
 
  515         for (j = 0; j < 16; j += part_width) {
 
  516             const int b_xy = (4 * 
s->mb_x + (j >> 2)) +
 
  517                              (4 * 
s->mb_y + (
i >> 2)) * 
s->b_stride;
 
  519             x = 16 * 
s->mb_x + j;
 
  520             y = 16 * 
s->mb_y + 
i;
 
  521             k = (j >> 2 & 1) + (
i >> 1 & 2) +
 
  522                 (j >> 1 & 4) + (
i      & 8);
 
  527                 mx = 
s->next_pic->motion_val[0][b_xy][0] * 2;
 
  528                 my = 
s->next_pic->motion_val[0][b_xy][1] * 2;
 
  531                     mx = mx * 
s->frame_num_offset /
 
  532                          s->prev_frame_num_offset + 1 >> 1;
 
  533                     my = my * 
s->frame_num_offset /
 
  534                          s->prev_frame_num_offset + 1 >> 1;
 
  536                     mx = mx * (
s->frame_num_offset - 
s->prev_frame_num_offset) /
 
  537                          s->prev_frame_num_offset + 1 >> 1;
 
  538                     my = my * (
s->frame_num_offset - 
s->prev_frame_num_offset) /
 
  539                          s->prev_frame_num_offset + 1 >> 1;
 
  544             mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
 
  545             my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
 
  554                 if (dx != (int16_t)dx || dy != (int16_t)dy) {
 
  563                 mx  = (mx + 1 >> 1) + dx;
 
  564                 my  = (my + 1 >> 1) + dy;
 
  565                 fx  = (unsigned)(mx + 0x30000) / 3 - 0x10000;
 
  566                 fy  = (unsigned)(my + 0x30000) / 3 - 0x10000;
 
  567                 dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
 
  570                                  fx, fy, dxy, 1, dir, 
avg);
 
  574                 mx  = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000;
 
  575                 my  = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000;
 
  576                 dxy = (mx & 1) + 2 * (my & 1);
 
  579                                  mx >> 1, my >> 1, dxy, 0, dir, 
avg);
 
  583                 mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000;
 
  584                 my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000;
 
  587                                  mx, my, 0, 0, dir, 
avg);
 
  596                 if (part_height == 8 && 
i < 8) {
 
  599                     if (part_width == 8 && j < 8)
 
  602                 if (part_width == 8 && j < 8)
 
  604                 if (part_width == 4 || part_height == 4)
 
  610                            part_width >> 2, part_height >> 2, 
s->b_stride,
 
  618                                                     int mb_type, 
const int *block_offset,
 
  623         for (
i = 0; 
i < 16; 
i++)
 
  624             if (
s->non_zero_count_cache[
scan8[
i]] || 
s->mb[
i * 16]) {
 
  625                 uint8_t *
const ptr = dest_y + block_offset[
i];
 
  634                                                        const int *block_offset,
 
  639     int qscale = 
s->qscale;
 
  642         for (
i = 0; 
i < 16; 
i++) {
 
  643             uint8_t *
const ptr = dest_y + block_offset[
i];
 
  644             const int dir      = 
s->intra4x4_pred_mode_cache[
scan8[
i]];
 
  649                 const int topright_avail = (
s->topright_samples_available << 
i) & 0x8000;
 
  651                 if (!topright_avail) {
 
  652                     tr       = ptr[3 - linesize] * 0x01010101
u;
 
  655                     topright = ptr + 4 - linesize;
 
  659             s->hpc.pred4x4[dir](ptr, topright, linesize);
 
  660             nnz = 
s->non_zero_count_cache[
scan8[
i]];
 
  666         s->hpc.pred16x16[
s->intra16x16_pred_mode](dest_y, linesize);
 
  673     const int mb_x    = 
s->mb_x;
 
  674     const int mb_y    = 
s->mb_y;
 
  675     const int mb_xy   = 
s->mb_xy;
 
  676     const int mb_type = 
s->cur_pic->mb_type[mb_xy];
 
  677     uint8_t *dest_y, *dest_cb, *dest_cr;
 
  678     int linesize, uvlinesize;
 
  680     const int *block_offset = &
s->block_offset[0];
 
  681     const int block_h   = 16 >> 1;
 
  683     linesize   = 
s->cur_pic->f->linesize[0];
 
  684     uvlinesize = 
s->cur_pic->f->linesize[1];
 
  686     dest_y  = 
s->cur_pic->f->data[0] + (mb_x     + mb_y * linesize)  * 16;
 
  687     dest_cb = 
s->cur_pic->f->data[1] +  mb_x * 8 + mb_y * uvlinesize * block_h;
 
  688     dest_cr = 
s->cur_pic->f->data[2] +  mb_x * 8 + mb_y * uvlinesize * block_h;
 
  690     s->vdsp.prefetch(dest_y  + (
s->mb_x & 3) * 4 * linesize   + 64, linesize,      4);
 
  691     s->vdsp.prefetch(dest_cb + (
s->mb_x & 7)     * uvlinesize + 64, dest_cr - dest_cb, 2);
 
  694         s->hpc.pred8x8[
s->chroma_pred_mode](dest_cb, uvlinesize);
 
  695         s->hpc.pred8x8[
s->chroma_pred_mode](dest_cr, uvlinesize);
 
  703         uint8_t *dest[2] = { dest_cb, dest_cr };
 
  704         s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 1,
 
  705                                                s->dequant4_coeff[4][0]);
 
  706         s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 2,
 
  707                                                s->dequant4_coeff[4][0]);
 
  708         for (j = 1; j < 3; j++) {
 
  709             for (
i = j * 16; 
i < j * 16 + 4; 
i++)
 
  710                 if (
s->non_zero_count_cache[
scan8[
i]] || 
s->mb[
i * 16]) {
 
  711                     uint8_t *
const ptr = dest[j - 1] + block_offset[
i];
 
  721     int i, j, k, m, dir, 
mode;
 
  725     const int mb_xy = 
s->mb_xy;
 
  726     const int b_xy  = 4 * 
s->mb_x + 4 * 
s->mb_y * 
s->b_stride;
 
  728     s->top_samples_available      = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
 
  729     s->left_samples_available     = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
 
  730     s->topright_samples_available = 0xFFFF;
 
  734             s->next_pic->mb_type[mb_xy] == -1) {
 
  744             mb_type = 
FFMIN(
s->next_pic->mb_type[mb_xy], 6);
 
  752     } 
else if (mb_type < 8) {     
 
  753         if (
s->thirdpel_flag && 
s->halfpel_flag == !
get_bits1(&
s->gb_slice))
 
  755         else if (
s->halfpel_flag &&
 
  770         for (m = 0; m < 2; m++) {
 
  771             if (
s->mb_x > 0 && 
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6] != -1) {
 
  772                 for (
i = 0; 
i < 4; 
i++)
 
  774                               s->cur_pic->motion_val[m][b_xy - 1 + 
i * 
s->b_stride]);
 
  776                 for (
i = 0; 
i < 4; 
i++)
 
  780                 memcpy(
s->mv_cache[m][
scan8[0] - 1 * 8],
 
  781                        s->cur_pic->motion_val[m][b_xy - 
s->b_stride],
 
  782                        4 * 2 * 
sizeof(int16_t));
 
  783                 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8],
 
  786                 if (
s->mb_x < 
s->mb_width - 1) {
 
  788                               s->cur_pic->motion_val[m][b_xy - 
s->b_stride + 4]);
 
  789                     s->ref_cache[m][
scan8[0] + 4 - 1 * 8] =
 
  790                         (
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 
s->mb_stride + 1] + 6] == -1 ||
 
  796                               s->cur_pic->motion_val[m][b_xy - 
s->b_stride - 1]);
 
  797                     s->ref_cache[m][
scan8[0] - 1 - 1 * 8] =
 
  802                 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8 - 1],
 
  818                 for (
i = 0; 
i < 4; 
i++)
 
  819                     memset(
s->cur_pic->motion_val[0][b_xy + 
i * 
s->b_stride],
 
  820                            0, 4 * 2 * 
sizeof(int16_t));
 
  826                 for (
i = 0; 
i < 4; 
i++)
 
  827                     memset(
s->cur_pic->motion_val[1][b_xy + 
i * 
s->b_stride],
 
  828                            0, 4 * 2 * 
sizeof(int16_t));
 
  833     } 
else if (mb_type == 8 || mb_type == 33) {   
 
  834         int8_t *i4x4       = 
s->intra4x4_pred_mode + 
s->mb2br_xy[
s->mb_xy];
 
  835         int8_t *i4x4_cache = 
s->intra4x4_pred_mode_cache;
 
  837         memset(
s->intra4x4_pred_mode_cache, -1, 8 * 5 * 
sizeof(int8_t));
 
  841                 for (
i = 0; 
i < 4; 
i++)
 
  842                     s->intra4x4_pred_mode_cache[
scan8[0] - 1 + 
i * 8] = 
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6 - 
i];
 
  843                 if (
s->intra4x4_pred_mode_cache[
scan8[0] - 1] == -1)
 
  844                     s->left_samples_available = 0x5F5F;
 
  847                 s->intra4x4_pred_mode_cache[4 + 8 * 0] = 
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 
s->mb_stride] + 0];
 
  848                 s->intra4x4_pred_mode_cache[5 + 8 * 0] = 
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 
s->mb_stride] + 1];
 
  849                 s->intra4x4_pred_mode_cache[6 + 8 * 0] = 
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 
s->mb_stride] + 2];
 
  850                 s->intra4x4_pred_mode_cache[7 + 8 * 0] = 
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 
s->mb_stride] + 3];
 
  852                 if (
s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
 
  853                     s->top_samples_available = 0x33FF;
 
  857             for (
i = 0; 
i < 16; 
i += 2) {
 
  862                            "luma prediction:%"PRIu32
"\n", vlc);
 
  867                 top  = &
s->intra4x4_pred_mode_cache[
scan8[
i] - 8];
 
  872                 if (
left[1] == -1 || 
left[2] == -1) {
 
  878             for (
i = 0; 
i < 4; 
i++)
 
  879                 memset(&
s->intra4x4_pred_mode_cache[
scan8[0] + 8 * 
i], 
DC_PRED, 4);
 
  883         i4x4[4] = i4x4_cache[7 + 8 * 3];
 
  884         i4x4[5] = i4x4_cache[7 + 8 * 2];
 
  885         i4x4[6] = i4x4_cache[7 + 8 * 1];
 
  889                                              s->avctx, 
s->top_samples_available,
 
  890                                              s->left_samples_available);
 
  892             s->top_samples_available  = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
 
  893             s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
 
  895             for (
i = 0; 
i < 4; 
i++)
 
  898             s->top_samples_available  = 0x33FF;
 
  899             s->left_samples_available = 0x5F5F;
 
  905         dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
 
  908                                                                      s->left_samples_available, dir, 0)) < 0) {
 
  910             return s->intra16x16_pred_mode;
 
  918         for (
i = 0; 
i < 4; 
i++)
 
  919             memset(
s->cur_pic->motion_val[0][b_xy + 
i * 
s->b_stride],
 
  920                    0, 4 * 2 * 
sizeof(int16_t));
 
  922             for (
i = 0; 
i < 4; 
i++)
 
  923                 memset(
s->cur_pic->motion_val[1][b_xy + 
i * 
s->b_stride],
 
  924                        0, 4 * 2 * 
sizeof(int16_t));
 
  928         memset(
s->intra4x4_pred_mode + 
s->mb2br_xy[mb_xy], 
DC_PRED, 8);
 
  931         memset(
s->non_zero_count_cache + 8, 0, 14 * 8 * 
sizeof(
uint8_t));
 
  948         if (
s->qscale > 31
u) {
 
  958                    "error while decoding intra luma dc\n");
 
  967         for (
i = 0; 
i < 4; 
i++)
 
  968             if ((cbp & (1 << 
i))) {
 
  969                 for (j = 0; j < 4; j++) {
 
  970                     k = 
index ? (1 * (j & 1) + 2 * (
i & 1) +
 
  971                                  2 * (j & 2) + 4 * (
i & 2))
 
  973                     s->non_zero_count_cache[
scan8[k]] = 1;
 
  977                                "error while decoding block\n");
 
  984             for (
i = 1; 
i < 3; ++
i)
 
  987                            "error while decoding chroma dc block\n");
 
  992                 for (
i = 1; 
i < 3; 
i++) {
 
  993                     for (j = 0; j < 4; j++) {
 
  995                         s->non_zero_count_cache[
scan8[k]] = 1;
 
  999                                    "error while decoding chroma ac block\n");
 
 1009     s->cur_pic->mb_type[mb_xy] = mb_type;
 
 1021     const int mb_xy   = 
s->mb_xy;
 
 1032         int slice_bits, slice_bytes, slice_length;
 
 1036         slice_bits   = slice_length * 8;
 
 1037         slice_bytes  = slice_length + 
length - 1;
 
 1049         memcpy(
s->slice_buf, 
s->gb.buffer + 
s->gb.index / 8, slice_bytes);
 
 1051         if (
s->watermark_key) {
 
 1058             memmove(
s->slice_buf, &
s->slice_buf[slice_length], 
length - 1);
 
 1070     if ((
header & 0x9F) == 2) {
 
 1071         i = (
s->mb_num < 64) ? 6 : (1 + 
av_log2(
s->mb_num - 1));
 
 1085     if (
s->has_watermark)
 
 1096         memset(
s->intra4x4_pred_mode + 
s->mb2br_xy[mb_xy - 1] + 3,
 
 1097                -1, 4 * 
sizeof(int8_t));
 
 1098         memset(
s->intra4x4_pred_mode + 
s->mb2br_xy[mb_xy - 
s->mb_x],
 
 1099                -1, 8 * 
sizeof(int8_t) * 
s->mb_x);
 
 1102         memset(
s->intra4x4_pred_mode + 
s->mb2br_xy[mb_xy - 
s->mb_stride],
 
 1103                -1, 8 * 
sizeof(int8_t) * (
s->mb_width - 
s->mb_x));
 
 1106             s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 
s->mb_stride - 1] + 3] = -1;
 
 1115     const int max_qp = 51;
 
 1117     for (q = 0; q < max_qp + 1; q++) {
 
 1120         for (x = 0; x < 16; x++)
 
 1121             s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
 
 1130     unsigned char *extradata;
 
 1131     unsigned char *extradata_end;
 
 1133     int marker_found = 0;
 
 1139     if (!
s->next_pic || !
s->last_pic || !
s->cur_pic) {
 
 1147     if (!
s->cur_pic->f || !
s->last_pic->f || !
s->next_pic->f)
 
 1164     s->halfpel_flag  = 1;
 
 1165     s->thirdpel_flag = 1;
 
 1166     s->has_watermark = 0;
 
 1169     extradata     = (
unsigned char *)avctx->
extradata;
 
 1173             if (!memcmp(extradata, 
"SEQH", 4)) {
 
 1184         int frame_size_code;
 
 1185         int unk0, unk1, unk2, unk3, unk4;
 
 1189         if (
size > extradata_end - extradata - 8) {
 
 1196         frame_size_code = 
get_bits(&gb, 3);
 
 1197         switch (frame_size_code) {
 
 1250                unk0, unk1, unk2, unk3, unk4);
 
 1259         if (
s->has_watermark) {
 
 1267             unsigned long buf_len     = watermark_width *
 
 1268                                         watermark_height * 4;
 
 1272             if (watermark_height <= 0 ||
 
 1273                 (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height) {
 
 1284                    watermark_width, watermark_height);
 
 1286                    "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
 
 1288             if (uncompress(
buf, &buf_len, extradata + 8 + 
offset,
 
 1291                        "could not uncompress watermark logo\n");
 
 1297             s->watermark_key = 
s->watermark_key << 16 | 
s->watermark_key;
 
 1299                    "watermark key %#"PRIx32
"\n", 
s->watermark_key);
 
 1303                    "this svq3 file contains watermark which need zlib support compiled in\n");
 
 1310     s->mb_width   = (avctx->
width + 15) / 16;
 
 1311     s->mb_height  = (avctx->
height + 15) / 16;
 
 1312     s->mb_stride  = 
s->mb_width + 1;
 
 1313     s->mb_num     = 
s->mb_width * 
s->mb_height;
 
 1314     s->b_stride   = 4 * 
s->mb_width;
 
 1315     s->h_edge_pos = 
s->mb_width * 16;
 
 1316     s->v_edge_pos = 
s->mb_height * 16;
 
 1318     s->intra4x4_pred_mode = 
av_mallocz(
s->mb_stride * 2 * 8);
 
 1319     if (!
s->intra4x4_pred_mode)
 
 1322     s->mb2br_xy = 
av_mallocz(
s->mb_stride * (
s->mb_height + 1) *
 
 1323                              sizeof(*
s->mb2br_xy));
 
 1327     for (y = 0; y < 
s->mb_height; y++)
 
 1328         for (x = 0; x < 
s->mb_width; x++) {
 
 1329             const int mb_xy = x + y * 
s->mb_stride;
 
 1331             s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 * 
s->mb_stride));
 
 1345     for (
i = 0; 
i < 2; 
i++) {
 
 1357     const int big_mb_num    = 
s->mb_stride * (
s->mb_height + 1) + 1;
 
 1358     const int mb_array_size = 
s->mb_stride * 
s->mb_height;
 
 1359     const int b4_stride     = 
s->mb_width * 4 + 1;
 
 1360     const int b4_array_size = b4_stride * 
s->mb_height * 4;
 
 1371         for (
i = 0; 
i < 2; 
i++) {
 
 1390     if (!
s->edge_emu_buffer) {
 
 1392         if (!
s->edge_emu_buffer)
 
 1406     int buf_size       = avpkt->
size;
 
 1412     if (buf_size == 0) {
 
 1413         if (
s->next_pic->f->data[0] && !
s->low_delay && !
s->last_frame_output) {
 
 1417             s->last_frame_output = 1;
 
 1423     s->mb_x = 
s->mb_y = 
s->mb_xy = 0;
 
 1425     if (
s->watermark_key) {
 
 1429         memcpy(
s->buf, avpkt->
data, buf_size);
 
 1442     s->pict_type = 
s->slice_type;
 
 1450     s->cur_pic->f->pict_type = 
s->pict_type;
 
 1457     for (
i = 0; 
i < 16; 
i++) {
 
 1459         s->block_offset[48 + 
i]      = (4 * ((
scan8[
i] - 
scan8[0]) & 7)) + 8 * 
s->cur_pic->f->linesize[0] * ((
scan8[
i] - 
scan8[0]) >> 3);
 
 1461     for (
i = 0; 
i < 16; 
i++) {
 
 1462         s->block_offset[16 + 
i]      =
 
 1463         s->block_offset[32 + 
i]      = (4 * ((
scan8[
i] - 
scan8[0]) & 7)) + 4 * 
s->cur_pic->f->linesize[1] * ((
scan8[
i] - 
scan8[0]) >> 3);
 
 1464         s->block_offset[48 + 16 + 
i] =
 
 1465         s->block_offset[48 + 32 + 
i] = (4 * ((
scan8[
i] - 
scan8[0]) & 7)) + 8 * 
s->cur_pic->f->linesize[1] * ((
scan8[
i] - 
scan8[0]) >> 3);
 
 1469         if (!
s->last_pic->f->data[0]) {
 
 1475             memset(
s->last_pic->f->data[0], 0, avctx->
height * 
s->last_pic->f->linesize[0]);
 
 1476             memset(
s->last_pic->f->data[1], 0x80, (avctx->
height / 2) *
 
 1477                    s->last_pic->f->linesize[1]);
 
 1478             memset(
s->last_pic->f->data[2], 0x80, (avctx->
height / 2) *
 
 1479                    s->last_pic->f->linesize[2]);
 
 1488             memset(
s->next_pic->f->data[0], 0, avctx->
height * 
s->next_pic->f->linesize[0]);
 
 1489             memset(
s->next_pic->f->data[1], 0x80, (avctx->
height / 2) *
 
 1490                    s->next_pic->f->linesize[1]);
 
 1491             memset(
s->next_pic->f->data[2], 0x80, (avctx->
height / 2) *
 
 1492                    s->next_pic->f->linesize[2]);
 
 1498                "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
 
 1500                s->halfpel_flag, 
s->thirdpel_flag,
 
 1501                s->adaptive_quant, 
s->qscale, 
s->slice_num);
 
 1508     if (
s->next_p_frame_damaged) {
 
 1512             s->next_p_frame_damaged = 0;
 
 1516         s->frame_num_offset = 
s->slice_num - 
s->prev_frame_num;
 
 1518         if (
s->frame_num_offset < 0)
 
 1519             s->frame_num_offset += 256;
 
 1520         if (
s->frame_num_offset == 0 ||
 
 1521             s->frame_num_offset >= 
s->prev_frame_num_offset) {
 
 1526         s->prev_frame_num        = 
s->frame_num;
 
 1527         s->frame_num             = 
s->slice_num;
 
 1528         s->prev_frame_num_offset = 
s->frame_num - 
s->prev_frame_num;
 
 1530         if (
s->prev_frame_num_offset < 0)
 
 1531             s->prev_frame_num_offset += 256;
 
 1534     for (m = 0; m < 2; m++) {
 
 1536         for (
i = 0; 
i < 4; 
i++) {
 
 1538             for (j = -1; j < 4; j++)
 
 1539                 s->ref_cache[m][
scan8[0] + 8 * 
i + j] = 1;
 
 1545     for (
s->mb_y = 0; 
s->mb_y < 
s->mb_height; 
s->mb_y++) {
 
 1546         for (
s->mb_x = 0; 
s->mb_x < 
s->mb_width; 
s->mb_x++) {
 
 1548             s->mb_xy = 
s->mb_x + 
s->mb_y * 
s->mb_stride;
 
 1557                 if (
s->slice_type != 
s->pict_type) {
 
 1571                        "error while decoding MB %d %d\n", 
s->mb_x, 
s->mb_y);
 
 1575             if (mb_type != 0 || 
s->cbp)
 
 1579                 s->cur_pic->mb_type[
s->mb_x + 
s->mb_y * 
s->mb_stride] =
 
 1584                            s->last_pic->f->data[0] ? 
s->last_pic->f : 
NULL,
 
 1591     if (
s->mb_y != 
s->mb_height || 
s->mb_x != 
s->mb_width) {
 
 1603     else if (
s->last_pic->f->data[0])
 
 1609     if (
s->last_pic->f->data[0] || 
s->low_delay)
 
  
uint8_t * edge_emu_buffer
static const uint32_t svq3_dequant_coeff[32]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
enum AVPictureType slice_type
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int svq3_decode_slice_header(AVCodecContext *avctx)
#define FFSWAP(type, a, b)
#define u(width, name, range_min, range_max)
uint8_t * data
The data buffer.
const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM+1]
static const int8_t mv[256][2]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
unsigned int left_samples_available
static int get_bits_count(const GetBitContext *s)
static const struct @148 svq3_dct_tables[2][16]
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
const uint8_t ff_h264_golomb_to_inter_cbp[48]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
the normal 2^n-1 "JPEG" YUV ranges
void * av_mallocz_array(size_t nmemb, size_t size)
static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic)
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
const uint8_t ff_h264_golomb_to_intra4x4_cbp[48]
#define MB_TYPE_INTRA16x16
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
unsigned int topright_samples_available
enum AVDiscard skip_frame
Skip decoding for selected frames.
int flags
AV_CODEC_FLAG_*.
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
const uint8_t ff_h264_golomb_to_pict_type[5]
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int8_t intra4x4_pred_mode_cache[5 *8]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
int has_b_frames
Size of the frame reordering buffer in the decoder.
enum AVPictureType pict_type
static int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
av_cold void ff_tpeldsp_init(TpelDSPContext *c)
static enum AVPixelFormat pix_fmts[]
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my)
Get the predicted MV.
unsigned int top_samples_available
AVBufferRef * motion_val_buf[2]
int prev_frame_num_offset
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int16_t(*[2] motion_val)[2]
@ AVDISCARD_ALL
discard all
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
AVBufferRef * ref_index_buf[2]
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
const uint8_t ff_h264_chroma_dc_scan[4]
AVBufferRef * mb_type_buf
int16_t mb_luma_dc[3][16 *2]
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
Context for storing H.264 DSP functions.
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static void init_dequant4_coeff_table(SVQ3Context *s)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
void ff_draw_horiz_band(AVCodecContext *avctx, AVFrame *cur, AVFrame *last, int y, int h, int picture_structure, int first_field, int low_delay)
Draw a horizontal band if supported.
static void hl_decode_mb(SVQ3Context *s)
static int get_interleaved_se_golomb(GetBitContext *gb)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const uint8_t header[24]
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const uint8_t ff_h264_quant_rem6[QP_MAX_NUM+1]
static void skip_bits1(GetBitContext *s)
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define AV_LOG_INFO
Standard information.
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
#define DECLARE_ALIGNED(n, t, v)
static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
int16_t mv_cache[2][5 *8][2]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
uint8_t non_zero_count_cache[15 *8]
#define PART_NOT_AVAILABLE
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
static const uint8_t svq3_scan[16]
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
static const int8_t svq3_pred_1[6][6][5]
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static int skip_1stop_8data_bits(GetBitContext *gb)
main external API structure.
const uint8_t ff_h264_dequant4_coeff_init[6][3]
int block_offset[2 *(16 *3)]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
int ff_h264_check_intra4x4_pred_mode(int8_t *pred_mode_cache, void *logctx, int top_samples_available, int left_samples_available)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...
const IMbInfo ff_h264_i_mb_type_info[26]
static void fill_rectangle(int x, int y, int w, int h)
static const uint8_t scan8[16 *3+3]
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static const uint8_t luma_dc_zigzag_scan[16]
const uint8_t ff_h264_quant_div6[QP_MAX_NUM+1]
Context for storing H.264 prediction functions.
static int shift(int a, int b)
static void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg)
@ AV_PICTURE_TYPE_P
Predicted.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
A reference to a data buffer.
static int svq3_decode_end(AVCodecContext *avctx)
int frame_number
Frame counter, set by libavcodec.
#define avpriv_request_sample(...)
uint32_t dequant4_coeff[QP_MAX_NUM+1][16]
int8_t ref_cache[2][5 *8]
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
uint16_t ff_svq1_packet_checksum(const uint8_t *data, const int length, int value)
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int svq3_decode_init(AVCodecContext *avctx)
@ AVDISCARD_NONREF
discard all non reference
int8_t * intra4x4_pred_mode
static const uint8_t svq3_pred_0[25][2]
int ff_h264_check_intra_pred_mode(void *logctx, int top_samples_available, int left_samples_available, int mode, int is_chroma)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...