Go to the documentation of this file.
   57 #define NOISE_SPREAD_THRESHOLD 0.9f 
   61 #define NOISE_LAMBDA_REPLACE 1.948f 
   78                                      int win, 
int group_len, 
const float lambda)
 
   85     const int run_esc  = (1 << 
run_bits) - 1;
 
   87     int stackrun[120], stackcb[120], stack_len;
 
   91     s->abs_pow34(
s->scoefs, sce->
coeffs, 1024);
 
   98     for (swb = 0; swb < max_sfb; swb++) {
 
  107             float minrd = next_minrd;
 
  108             int mincb = next_mincb;
 
  112                 float cost_stay_here, cost_get_here;
 
  121                 for (
w = 0; 
w < group_len; 
w++) {
 
  122                     FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
win+
w)*16+swb];
 
  124                                              &
s->scoefs[start + 
w*128], 
size,
 
  128                 cost_stay_here = path[swb][
cb].
cost + rd;
 
  129                 cost_get_here  = minrd              + rd + 
run_bits + 4;
 
  133                 if (cost_get_here < cost_stay_here) {
 
  135                     path[swb+1][
cb].
cost     = cost_get_here;
 
  136                     path[swb+1][
cb].
run      = 1;
 
  139                     path[swb+1][
cb].
cost     = cost_stay_here;
 
  142                 if (path[swb+1][
cb].cost < next_minrd) {
 
  143                     next_minrd = path[swb+1][
cb].
cost;
 
  155         if (path[max_sfb][
cb].cost < path[max_sfb][idx].cost)
 
  161         stackrun[stack_len] = path[ppos][
cb].
run;
 
  162         stackcb [stack_len] = 
cb;
 
  164         ppos -= path[ppos][
cb].
run;
 
  169     for (
i = stack_len - 1; 
i >= 0; 
i--) {
 
  175         for (j = 0; j < count; j++) {
 
  179         while (count >= run_esc) {
 
  193 #define TRELLIS_STAGES 121 
  194 #define TRELLIS_STATES (SCALE_MAX_DIFF+1) 
  199     int prevscaler_n = -255, prevscaler_i = 0;
 
  211                 if (prevscaler_n == -255)
 
  239     int q, 
w, w2, 
g, start = 0;
 
  246     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
 
  247     int q0, 
q1, qcnt = 0;
 
  249     for (
i = 0; 
i < 1024; 
i++) {
 
  250         float t = fabsf(sce->
coeffs[
i]);
 
  279         } 
else if (
q1 > q1high) {
 
  292         paths[0][
i].
cost    = 0.0f;
 
  293         paths[0][
i].
prev    = -1;
 
  298             paths[j][
i].
prev    = -2;
 
  302     s->abs_pow34(
s->scoefs, sce->
coeffs, 1024);
 
  306             const float *coefs = &sce->
coeffs[start];
 
  310             bandaddr[idx] = 
w * 16 + 
g;
 
  314                 FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
 
  322                     float t = fabsf(coefs[w2*128+
i]);
 
  324                         qmin = 
FFMIN(qmin, t);
 
  325                     qmax = 
FFMAX(qmax, t);
 
  329                 int minscale, maxscale;
 
  338                 if (minscale == maxscale) {
 
  343                 for (q = minscale; q < maxscale; q++) {
 
  347                         FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
 
  351                     minrd = 
FFMIN(minrd, dist);
 
  353                     for (
i = 0; 
i < 
q1 - 
q0; 
i++) {
 
  355                         cost = paths[idx - 1][
i].
cost + dist
 
  357                         if (cost < paths[idx][q].cost) {
 
  358                             paths[idx][q].
cost    = cost;
 
  359                             paths[idx][q].
prev    = 
i;
 
  364                 for (q = 0; q < 
q1 - 
q0; q++) {
 
  365                     paths[idx][q].
cost = paths[idx - 1][q].
cost + 1;
 
  366                     paths[idx][q].
prev = q;
 
  375     mincost = paths[idx][0].
cost;
 
  378         if (paths[idx][
i].cost < mincost) {
 
  379             mincost = paths[idx][
i].
cost;
 
  384         sce->
sf_idx[bandaddr[idx]] = minq + 
q0;
 
  385         minq = 
FFMAX(paths[idx][minq].prev, 0);
 
  399     int start = 0, 
i, 
w, w2, 
g;
 
  401     float dists[128] = { 0 }, uplims[128] = { 0 };
 
  403     int fflag, minscaler;
 
  410     destbits = 
FFMIN(destbits, 5800);
 
  417             float uplim = 0.0f, energy = 0.0f;
 
  419                 FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
 
  428             uplims[
w*16+
g] = uplim *512;
 
  432                 minthr = 
FFMIN(minthr, uplim);
 
  449     s->abs_pow34(
s->scoefs, sce->
coeffs, 1024);
 
  455             const float *scaled = 
s->scoefs + start;
 
  465         minscaler = sce->
sf_idx[0];
 
  467         qstep = its ? 1 : 32;
 
  474                     const float *coefs = sce->
coeffs + start;
 
  475                     const float *scaled = 
s->scoefs + start;
 
  497                     dists[
w*16+
g] = dist - 
bits;
 
  506             if (tbits > destbits) {
 
  507                 for (
i = 0; 
i < 128; 
i++)
 
  508                     if (sce->
sf_idx[
i] < 218 - qstep)
 
  511                 for (
i = 0; 
i < 128; 
i++)
 
  512                     if (sce->
sf_idx[
i] > 60 - qstep)
 
  516             if (!qstep && tbits > destbits*1.02 && sce->
sf_idx[0] < 217)
 
  526                 if (dists[
w*16+
g] > uplims[
w*16+
g] && sce->
sf_idx[
w*16+
g] > 60) {
 
  540     } 
while (fflag && its < 10);
 
  548     int bandwidth, cutoff;
 
  549     float *PNS = &
s->scoefs[0*128], *PNS34 = &
s->scoefs[1*128];
 
  550     float *NOR34 = &
s->scoefs[3*128];
 
  552     const float lambda = 
s->lambda;
 
  553     const float freq_mult = avctx->
sample_rate*0.5f/wlen;
 
  556     const float dist_bias = av_clipf(4.
f * 120 / lambda, 0.25
f, 4.0
f);
 
  557     const float pns_transient_energy_r = 
FFMIN(0.7
f, lambda / 140.
f);
 
  564     float rate_bandwidth_multiplier = 1.5f;
 
  565     int prev = -1000, prev_sf = -1;
 
  567         ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
 
  570     frame_bit_rate *= 1.15f;
 
  573         bandwidth = avctx->
cutoff;
 
  578     cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
 
  586             float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
 
  587             float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
 
  588             float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
 
  589             float min_energy = -1.0f, max_energy = 0.0f;
 
  591             const float freq = (start-wstart)*freq_mult;
 
  599                 band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
 
  600                 sfb_energy += band->
energy;
 
  604                     min_energy = max_energy = band->
energy;
 
  622                 ((sce->
zeroes[
w*16+
g] || !sce->
band_alt[
w*16+
g]) && sfb_energy < threshold*sqrtf(1.0
f/freq_boost)) || spread < spread_threshold ||
 
  623                 (!sce->
zeroes[
w*16+
g] && sce->
band_alt[
w*16+
g] && sfb_energy > threshold*thr_mult*freq_boost) ||
 
  624                 min_energy < pns_transient_energy_r * max_energy ) {
 
  631             pns_tgt_energy = sfb_energy*
FFMIN(1.0
f, spread*spread);
 
  632             noise_sfi = av_clip(
roundf(
log2f(pns_tgt_energy)*2), -100, 155); 
 
  643                 float band_energy, scale, pns_senergy;
 
  645                 band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
 
  648                     PNS[
i] = 
s->random_state;
 
  650                 band_energy = 
s->fdsp->scalarproduct_float(PNS, PNS, sce->
ics.
swb_sizes[
g]);
 
  651                 scale = noise_amp/sqrtf(band_energy);
 
  652                 s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->
ics.
swb_sizes[
g]);
 
  653                 pns_senergy = 
s->fdsp->scalarproduct_float(PNS, PNS, sce->
ics.
swb_sizes[
g]);
 
  654                 pns_energy += pns_senergy;
 
  671             energy_ratio = pns_tgt_energy/pns_energy; 
 
  672             sce->
pns_ener[
w*16+
g] = energy_ratio*pns_tgt_energy;
 
  673             if (sce->
zeroes[
w*16+
g] || !sce->
band_alt[
w*16+
g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
 
  690     int bandwidth, cutoff;
 
  691     const float lambda = 
s->lambda;
 
  692     const float freq_mult = avctx->
sample_rate*0.5f/wlen;
 
  694     const float pns_transient_energy_r = 
FFMIN(0.7
f, lambda / 140.
f);
 
  701     float rate_bandwidth_multiplier = 1.5f;
 
  703         ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
 
  706     frame_bit_rate *= 1.15f;
 
  709         bandwidth = avctx->
cutoff;
 
  714     cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
 
  719             float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
 
  720             float min_energy = -1.0f, max_energy = 0.0f;
 
  722             const float freq = start*freq_mult;
 
  724             if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
 
  729                 band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
 
  730                 sfb_energy += band->
energy;
 
  734                     min_energy = max_energy = band->
energy;
 
  747             if (sfb_energy < threshold*sqrtf(1.5
f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
 
  758     int start = 0, 
i, 
w, w2, 
g, sid_sf_boost, prev_mid, prev_side;
 
  759     uint8_t nextband0[128], nextband1[128];
 
  760     float *
M   = 
s->scoefs + 128*0, *
S   = 
s->scoefs + 128*1;
 
  761     float *L34 = 
s->scoefs + 128*2, *R34 = 
s->scoefs + 128*3;
 
  762     float *M34 = 
s->scoefs + 128*4, *S34 = 
s->scoefs + 128*5;
 
  763     const float lambda = 
s->lambda;
 
  764     const float mslambda = 
FFMIN(1.0
f, lambda / 120.
f);
 
  774     prev_mid = sce0->
sf_idx[0];
 
  775     prev_side = sce1->
sf_idx[0];
 
  783                 float Mmax = 0.0f, Smax = 0.0f;
 
  789                               + sce1->
coeffs[start+(
w+w2)*128+
i]) * 0.5;
 
  796                         Mmax = 
FFMAX(Mmax, M34[
i]);
 
  797                         Smax = 
FFMAX(Smax, S34[
i]);
 
  801                 for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
 
  802                     float dist1 = 0.0f, dist2 = 0.0f;
 
  822                     midcb = 
FFMAX(1,midcb);
 
  823                     sidcb = 
FFMAX(1,sidcb);
 
  826                         FFPsyBand *band0 = &
s->psy.ch[
s->cur_channel+0].psy_bands[(
w+w2)*16+
g];
 
  827                         FFPsyBand *band1 = &
s->psy.ch[
s->cur_channel+1].psy_bands[(
w+w2)*16+
g];
 
  832                                   + sce1->
coeffs[start+(
w+w2)*128+
i]) * 0.5;
 
  864                                                     mslambda / (minthr * bmax + FLT_MIN), 
INFINITY, &b4, 
NULL, 0);
 
  882                     } 
else if (
B1 > 
B0) {
 
  
enum BandType band_alt[128]
alternative band type (used by encoder)
static const uint8_t q1[256]
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator
uint8_t can_pns[128]
band is allowed to PNS (informative)
int sample_rate
samples per second
static double cb(void *priv, double x, double y)
#define CB_TOT_ALL
Total number of codebooks, including special ones.
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
Process LTP parameters.
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
uint8_t zeroes[128]
band is not coded (used by encoder)
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
static av_always_inline float bval2bmax(float b)
approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB]
static int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int band)
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
static av_always_inline av_const float roundf(float x)
static uint8_t coef2maxsf(float coef)
Return the maximum scalefactor where the quantized coef is not zero.
#define SCALE_MAX_POS
scalefactor index maximum value
static float win(SuperEqualizerContext *s, float n, int N)
int num_swb
number of scalefactor window bands
static double b1(void *priv, double x, double y)
#define SCALE_DIV_512
scalefactor difference that corresponds to scale difference in 512 times
static int ff_sfdelta_can_replace(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int new_sf, int band)
int flags
AV_CODEC_FLAG_*.
#define POW_SF2_ZERO
ff_aac_pow2sf_tab index corresponding to pow(2, 0);
IndividualChannelStream ics
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
@ NOISE_BT
Spectral data are scaled white noise not coded in the bitstream.
static double b3(void *priv, double x, double y)
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
const uint8_t * swb_sizes
table of scalefactor band sizes for a particular window
@ INTENSITY_BT2
Scalefactor data are intensity stereo positions (out of phase).
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, int common_window)
Encode LTP data.
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
static const float bands[]
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
static const uint8_t q0[256]
static float quantize_band_cost_cached(struct AACEncContext *s, int w, int g, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
@ INTENSITY_BT
Scalefactor data are intensity stereo positions (in phase).
uint8_t is_mask[128]
Set if intensity stereo is used (used by encoder)
float is_ener[128]
Intensity stereo pos (used by encoder)
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
int64_t bit_rate
the average bitrate
single band psychoacoustic information
void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
Encode TNS data.
static void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
static const uint8_t *const run_value_bits[2]
int sf_idx[128]
scalefactor indices (used by encoder)
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
const uint8_t ff_aac_scalefactor_bits[121]
static uint8_t coef2minsf(float coef)
Return the minimum scalefactor where the quantized coef does not clip.
static const uint8_t aac_cb_out_map[CB_TOT_ALL]
Map to convert values from BandCodingPath index to a codebook index.
SingleChannelElement ch[2]
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
#define NOISE_SPREAD_THRESHOLD
static const uint8_t run_bits[7][16]
static double b2(void *priv, double x, double y)
int common_window
Set if channels share a common 'IndividualChannelStream' in bitstream.
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
two-loop quantizers search taken from ISO 13818-7 Appendix C
uint8_t ms_mask[128]
Set if mid/side stereo is used for each scalefactor window band.
#define SCALE_MAX_DIFF
maximum scalefactor difference allowed by standard
float pns_ener[128]
Noise energy values (used by encoder)
int channels
number of audio channels
#define AAC_CUTOFF_FROM_BITRATE(bit_rate, channels, sample_rate)
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
Single Channel Element - used for both SCE and LFE elements.
#define i(width, name, range_min, range_max)
#define SCALE_ONE_POS
scalefactor index that corresponds to scale=1.0
static int find_min_book(float maxval, int sf)
static const uint8_t aac_cb_in_map[CB_TOT_ALL+1]
Inverse map to convert from codebooks to BandCodingPath indices.
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
channel element - generic struct for SCE/CPE/CCE/LFE
int cutoff
Audio cutoff bandwidth (0 means "automatic")
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
#define NOISE_LOW_LIMIT
This file contains a template for the twoloop coder function.
void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
structure used in optimal codebook search
@ RESERVED_BT
Band types following are encoded differently from others.
main external API structure.
float ff_aac_pow2sf_tab[428]
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, int size, int scale_idx, int cb, const float lambda, int rtz)
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
Encoder predictors data.
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
Encode band info for single window group bands.
static float find_max_val(int group_len, int swb_size, const float *scaled)
int prev_idx
pointer to the previous path point
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
uint8_t max_sfb
number of scalefactor bands per group
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, int common_window)
Mark LTP sfb's.
static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
enum BandType band_type[128]
band types
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
#define NOISE_LAMBDA_REPLACE