Go to the documentation of this file.
   38 #define FLAC_SUBFRAME_CONSTANT  0 
   39 #define FLAC_SUBFRAME_VERBATIM  1 
   40 #define FLAC_SUBFRAME_FIXED     8 
   41 #define FLAC_SUBFRAME_LPC      32 
   43 #define MAX_FIXED_ORDER     4 
   44 #define MAX_PARTITION_ORDER 8 
   45 #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER) 
   46 #define MAX_LPC_PRECISION  15 
   47 #define MIN_LPC_SHIFT       0 
   48 #define MAX_LPC_SHIFT      15 
  149     put_bits(&pb,  5, 
s->avctx->bits_per_raw_sample - 1);
 
  151     put_bits(&pb, 24, (
s->sample_count & 0xFFFFFF000LL) >> 12);
 
  152     put_bits(&pb, 12,  
s->sample_count & 0x000000FFFLL);
 
  154     memcpy(&
header[18], 
s->md5sum, 16);
 
  170     target    = (samplerate * block_time_ms) / 1000;
 
  171     for (
i = 0; 
i < 16; 
i++) {
 
  196         av_log(avctx, 
AV_LOG_DEBUG, 
" lpc type: Levinson-Durbin recursion with Welch window\n");
 
  272     for (
i = 4; 
i < 12; 
i++) {
 
  282         if (freq % 1000 == 0 && freq < 255000) {
 
  284             s->sr_code[1] = freq / 1000;
 
  285         } 
else if (freq % 10 == 0 && freq < 655350) {
 
  287             s->sr_code[1] = freq / 10;
 
  288         } 
else if (freq < 65535) {
 
  290             s->sr_code[1] = freq;
 
  295         s->samplerate = freq;
 
  300         s->options.compression_level = 5;
 
  304     level = 
s->options.compression_level;
 
  307                s->options.compression_level);
 
  311     s->options.block_time_ms = ((
int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[
level];
 
  320     if (
s->options.min_prediction_order < 0)
 
  321         s->options.min_prediction_order = ((
int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[
level];
 
  322     if (
s->options.max_prediction_order < 0)
 
  323         s->options.max_prediction_order = ((
int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[
level];
 
  325     if (
s->options.prediction_order_method < 0)
 
  332     if (
s->options.min_partition_order > 
s->options.max_partition_order) {
 
  334                s->options.min_partition_order, 
s->options.max_partition_order);
 
  337     if (
s->options.min_partition_order < 0)
 
  338         s->options.min_partition_order = ((
int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[
level];
 
  339     if (
s->options.max_partition_order < 0)
 
  340         s->options.max_partition_order = ((
int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[
level];
 
  342 #if FF_API_PRIVATE_OPT 
  348                        "invalid min prediction order %d, clamped to %d\n",
 
  364                        "invalid max prediction order %d, clamped to %d\n",
 
  379         s->options.min_prediction_order = 0;
 
  380         s->options.max_prediction_order = 0;
 
  384                    "invalid min prediction order %d, clamped to %d\n",
 
  390                    "invalid max prediction order %d, clamped to %d\n",
 
  396     if (
s->options.max_prediction_order < 
s->options.min_prediction_order) {
 
  398                s->options.min_prediction_order, 
s->options.max_prediction_order);
 
  412     s->max_blocksize = 
s->avctx->frame_size;
 
  417                                                   s->avctx->bits_per_raw_sample);
 
  433     s->min_framesize = 
s->max_framesize;
 
  448                                              "output stream will have incorrect " 
  449                                              "channel layout.\n");
 
  452                                                "will use Flac channel layout for " 
  477     for (
i = 0; 
i < 16; 
i++) {
 
  481             frame->bs_code[1] = 0;
 
  486         frame->blocksize = nb_samples;
 
  487         if (
frame->blocksize <= 256) {
 
  488             frame->bs_code[0] = 6;
 
  491             frame->bs_code[0] = 7;
 
  496     for (ch = 0; ch < 
s->channels; ch++) {
 
  500         sub->
obits  = 
s->avctx->bits_per_raw_sample;
 
  508     frame->verbatim_only = 0;
 
  520                 s->avctx->bits_per_raw_sample;
 
  522 #define COPY_SAMPLES(bits) do {                                     \ 
  523     const int ## bits ## _t *samples0 = samples;                    \ 
  525     for (i = 0, j = 0; i < frame->blocksize; i++)                   \ 
  526         for (ch = 0; ch < s->channels; ch++, j++)                   \ 
  527             frame->subframes[ch].samples[i] = samples0[j] >> shift; \ 
  542     for (
i = 0; 
i < n; 
i++) {
 
  545         count += (v >> k) + 1 + k;
 
  554     int p, porder, psize;
 
  568         count += 
s->frame.blocksize * sub->
obits;
 
  571         count += pred_order * sub->
obits;
 
  575             count += 4 + 5 + pred_order * 
s->options.lpc_coeff_precision;
 
  582         psize  = 
s->frame.blocksize >> porder;
 
  588         for (p = 0; p < 1 << porder; p++) {
 
  593             part_end = 
FFMIN(
s->frame.blocksize, part_end + psize);
 
  601 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) 
  613     sum2 = sum - (n >> 1);
 
  614     k    = 
av_log2(av_clipl_int32(sum2 / n));
 
  615     return FFMIN(k, max_param);
 
  621     int64_t bestbits = INT64_MAX;
 
  624     for (k = 0; k <= max_param; k++) {
 
  625         int64_t 
bits = sums[k][
i];
 
  626         if (
bits < bestbits) {
 
  637                                          int n, 
int pred_order, 
int max_param, 
int exact)
 
  643     part     = (1 << porder);
 
  646     cnt = (n >> porder) - pred_order;
 
  647     for (
i = 0; 
i < part; 
i++) {
 
  650             all_bits += sums[k][
i];
 
  670     const uint32_t *res, *res_end;
 
  675     for (k = 0; k <= kmax; k++) {
 
  676         res     = &
data[pred_order];
 
  677         res_end = &
data[n >> pmax];
 
  678         for (
i = 0; 
i < parts; 
i++) {
 
  680                 uint64_t sum = (1LL + k) * (res_end - res);
 
  681                 while (res < res_end)
 
  682                     sum += *(res++) >> k;
 
  686                 while (res < res_end)
 
  690             res_end += n >> pmax;
 
  698     int parts = (1 << 
level);
 
  699     for (
i = 0; 
i < parts; 
i++) {
 
  700         for (k=0; k<=kmax; k++)
 
  701             sums[k][
i] = sums[k][2*
i] + sums[k][2*
i+1];
 
  709                                  const int32_t *
data, 
int n, 
int pred_order, 
int exact)
 
  723     for (
i = 0; 
i < n; 
i++)
 
  726     calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
 
  729     bits[pmin] = UINT32_MAX;
 
  732         if (
bits[
i] < 
bits[opt_porder] || pmax == pmin) {
 
  741     return bits[opt_porder];
 
  758                                s->frame.blocksize, pred_order);
 
  760                                s->frame.blocksize, pred_order);
 
  764         bits += 4 + 5 + pred_order * 
s->options.lpc_coeff_precision;
 
  766                              s->frame.blocksize, pred_order, 
s->options.exact_rice_parameters);
 
  776     for (
i = 0; 
i < order; 
i++)
 
  780         for (
i = order; 
i < n; 
i++)
 
  782     } 
else if (order == 1) {
 
  783         for (
i = order; 
i < n; 
i++)
 
  784             res[
i] = smp[
i] - smp[
i-1];
 
  785     } 
else if (order == 2) {
 
  786         int a = smp[order-1] - smp[order-2];
 
  787         for (
i = order; 
i < n; 
i += 2) {
 
  788             int b    = smp[
i  ] - smp[
i-1];
 
  790             a        = smp[
i+1] - smp[
i  ];
 
  793     } 
else if (order == 3) {
 
  794         int a = smp[order-1] -   smp[order-2];
 
  795         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 
  796         for (
i = order; 
i < n; 
i += 2) {
 
  797             int b    = smp[
i  ] - smp[
i-1];
 
  800             a        = smp[
i+1] - smp[
i  ];
 
  805         int a = smp[order-1] -   smp[order-2];
 
  806         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
 
  807         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 
  808         for (
i = order; 
i < n; 
i += 2) {
 
  809             int b    = smp[
i  ] - smp[
i-1];
 
  813             a        = smp[
i+1] - smp[
i  ];
 
  825     int min_order, max_order, opt_order, omethod;
 
  833     sub   = &
frame->subframes[ch];
 
  836     n     = 
frame->blocksize;
 
  839     for (
i = 1; 
i < n; 
i++)
 
  849     if (
frame->verbatim_only || n < 5) {
 
  851         memcpy(res, smp, n * 
sizeof(
int32_t));
 
  855     min_order  = 
s->options.min_prediction_order;
 
  856     max_order  = 
s->options.max_prediction_order;
 
  857     omethod    = 
s->options.prediction_order_method;
 
  867         bits[0]   = UINT32_MAX;
 
  868         for (
i = min_order; 
i <= max_order; 
i++) {
 
  874         sub->
order     = opt_order;
 
  876         if (sub->
order != max_order) {
 
  886                                   s->options.lpc_coeff_precision, coefs, 
shift, 
s->options.lpc_type,
 
  887                                   s->options.lpc_passes, omethod,
 
  893         int levels = 1 << omethod;
 
  896         int opt_index   = levels-1;
 
  897         opt_order       = max_order-1;
 
  898         bits[opt_index] = UINT32_MAX;
 
  899         for (
i = levels-1; 
i >= 0; 
i--) {
 
  900             int last_order = order;
 
  901             order = min_order + (((max_order-min_order+1) * (
i+1)) / levels)-1;
 
  902             order = av_clip(order, min_order - 1, max_order - 1);
 
  903             if (order == last_order)
 
  905             if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(order) <= 32) {
 
  906                 s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order],
 
  909                 s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
 
  923         bits[0]   = UINT32_MAX;
 
  924         for (
i = min_order-1; 
i < max_order; 
i++) {
 
  925             if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(
i) <= 32) {
 
  926                 s->flac_dsp.lpc16_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  928                 s->flac_dsp.lpc32_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  939         opt_order = min_order - 1 + (max_order-min_order)/3;
 
  943             int last = opt_order;
 
  945                 if (i < min_order-1 || i >= max_order || 
bits[
i] < UINT32_MAX)
 
  947                 if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(
i) <= 32) {
 
  948                     s->flac_dsp.lpc32_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  950                     s->flac_dsp.lpc16_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  960     if (
s->options.multi_dim_quant) {
 
  962         int i, 
step, improved;
 
  963         int64_t best_score = INT64_MAX;
 
  966         qmax = (1 << (
s->options.lpc_coeff_precision - 1)) - 1;
 
  968         for (
i=0; 
i<opt_order; 
i++)
 
  979                 for (
i=0; 
i<opt_order; 
i++) {
 
  980                     int diff = ((
tmp + 1) % 3) - 1;
 
  981                     lpc_try[
i] = av_clip(coefs[opt_order - 1][
i] + 
diff, -qmax, qmax);
 
  988                 if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(opt_order - 1) <= 32) {
 
  989                     s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, 
shift[opt_order-1]);
 
  991                     s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, 
shift[opt_order-1]);
 
  994                 if (score < best_score) {
 
  996                     memcpy(coefs[opt_order-1], lpc_try, 
sizeof(*coefs));
 
 1003     sub->
order     = opt_order;
 
 1009     if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(opt_order) <= 32) {
 
 1042     if (
s->frame.bs_code[0] == 6)
 
 1044     else if (
s->frame.bs_code[0] == 7)
 
 1048     count += ((
s->sr_code[0] == 12) + (
s->sr_code[0] > 12) * 2) * 8;
 
 1064     for (ch = 0; ch < 
s->channels; ch++)
 
 1067     count += (8 - (count & 7)) & 7; 
 
 1071     if (count > INT_MAX)
 
 1081     for (ch = 0; ch < 
s->channels; ch++) {
 
 1085         for (
i = 0; 
i < 
s->frame.blocksize; 
i++) {
 
 1091         if (v && !(v & 1)) {
 
 1094             for (
i = 0; 
i < 
s->frame.blocksize; 
i++)
 
 1119     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 
 1120     for (
i = 2; 
i < n; 
i++) {
 
 1121         lt = left_ch[
i]  - 2*left_ch[
i-1]  + left_ch[
i-2];
 
 1122         rt = right_ch[
i] - 2*right_ch[
i-1] + right_ch[
i-2];
 
 1123         sum[2] += 
FFABS((lt + rt) >> 1);
 
 1124         sum[3] += 
FFABS(lt - rt);
 
 1125         sum[0] += 
FFABS(lt);
 
 1126         sum[1] += 
FFABS(rt);
 
 1129     for (
i = 0; 
i < 4; 
i++) {
 
 1135     score[0] = sum[0] + sum[1];
 
 1136     score[1] = sum[0] + sum[3];
 
 1137     score[2] = sum[1] + sum[3];
 
 1138     score[3] = sum[2] + sum[3];
 
 1142     for (
i = 1; 
i < 4; 
i++)
 
 1143         if (score[
i] < score[best])
 
 1160     n     = 
frame->blocksize;
 
 1162     right = 
frame->subframes[1].samples;
 
 1164     if (
s->channels != 2) {
 
 1169     if (
s->options.ch_mode < 0) {
 
 1170         int max_rice_param = (1 << 
frame->subframes[0].rc.coding_mode) - 2;
 
 1173         frame->ch_mode = 
s->options.ch_mode;
 
 1180         for (
i = 0; 
i < n; 
i++) {
 
 1183             right[
i] =  
tmp - right[
i];
 
 1185         frame->subframes[1].obits++;
 
 1187         for (
i = 0; 
i < n; 
i++)
 
 1188             right[
i] = 
left[
i] - right[
i];
 
 1189         frame->subframes[1].obits++;
 
 1191         for (
i = 0; 
i < n; 
i++)
 
 1193         frame->subframes[0].obits++;
 
 1225     if (
frame->bs_code[0] == 6)
 
 1227     else if (
frame->bs_code[0] == 7)
 
 1230     if (
s->sr_code[0] == 12)
 
 1232     else if (
s->sr_code[0] > 12)
 
 1246     for (ch = 0; ch < 
s->channels; ch++) {
 
 1248         int i, p, porder, psize;
 
 1273                 int cbits = 
s->options.lpc_coeff_precision;
 
 1285             psize   = 
s->frame.blocksize >> porder;
 
 1290             for (p = 0; p < 1 << porder; p++) {
 
 1293                 while (res < part_end)
 
 1326     int buf_size = 
s->frame.blocksize * 
s->channels *
 
 1327                    ((
s->avctx->bits_per_raw_sample + 7) / 8);
 
 1329     if (
s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
 
 1335     if (
s->avctx->bits_per_raw_sample <= 16) {
 
 1338         s->bdsp.bswap16_buf((uint16_t *) 
s->md5_buffer,
 
 1339                             (
const uint16_t *) 
samples, buf_size / 2);
 
 1340         buf = 
s->md5_buffer;
 
 1347         for (
i = 0; 
i < 
s->frame.blocksize * 
s->channels; 
i++) {
 
 1351         buf = 
s->md5_buffer;
 
 1363     int frame_bytes, out_bytes, 
ret;
 
 1369         s->max_framesize = 
s->max_encoded_framesize;
 
 1373 #if FF_API_SIDEDATA_ONLY_PKT 
 1386             avpkt->
pts = 
s->next_pts;
 
 1388             *got_packet_ptr = 1;
 
 1396     if (
frame->nb_samples < 
s->frame.blocksize) {
 
 1414     if (frame_bytes < 0 || frame_bytes > 
s->max_framesize) {
 
 1415         s->frame.verbatim_only = 1;
 
 1417         if (frame_bytes < 0) {
 
 1429     s->sample_count += 
frame->nb_samples;
 
 1434     if (out_bytes > 
s->max_encoded_framesize)
 
 1435         s->max_encoded_framesize = out_bytes;
 
 1436     if (out_bytes < s->min_framesize)
 
 1437         s->min_framesize = out_bytes;
 
 1441     avpkt->
size     = out_bytes;
 
 1445     *got_packet_ptr = 1;
 
 1463 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM 
 1466 { 
"lpc_type", 
"LPC algorithm", offsetof(
FlacEncodeContext, 
options.lpc_type), 
AV_OPT_TYPE_INT, {.i64 = 
FF_LPC_TYPE_DEFAULT }, 
FF_LPC_TYPE_DEFAULT, 
FF_LPC_TYPE_NB-1, 
FLAGS, 
"lpc_type" },
 
 1474 { 
"prediction_order_method", 
"Search method for selecting prediction order", offsetof(
FlacEncodeContext, 
options.prediction_order_method), 
AV_OPT_TYPE_INT, {.i64 = -1 }, -1, 
ORDER_METHOD_LOG, 
FLAGS, 
"predm" },
 
 1481 { 
"ch_mode", 
"Stereo decorrelation mode", offsetof(
FlacEncodeContext, 
options.ch_mode), 
AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 
FLAC_CHMODE_MID_SIDE, 
FLAGS, 
"ch_mode" },
 
  
int frame_size
Number of samples per channel in an audio frame.
 
#define FF_ENABLE_DEPRECATION_WARNINGS
 
#define AV_LOG_WARNING
Something somehow does not look correct.
 
#define PUT_UTF8(val, tmp, PUT_BYTE)
 
FFLPCType
LPC analysis type.
 
#define AV_CH_LAYOUT_5POINT0_BACK
 
int32_t samples[FLAC_MAX_BLOCKSIZE]
 
static av_cold int init(AVCodecContext *avctx)
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static av_cold int flac_encode_init(AVCodecContext *avctx)
 
uint64_t channel_layout
Audio channel layout.
 
int sample_rate
samples per second
 
static void set_sr_golomb_flac(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (flac).
 
int exact_rice_parameters
 
#define MAX_PARTITION_ORDER
 
static enum AVSampleFormat sample_fmts[]
 
static void put_sbits(PutBitContext *pb, int n, int32_t value)
 
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
 
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
 
This structure describes decoded (raw) audio or video data.
 
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
 
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
 
@ FF_LPC_TYPE_CHOLESKY
Cholesky factorization.
 
av_cold void ff_flacdsp_init(FLACDSPContext *c, enum AVSampleFormat fmt, int channels, int bps)
 
int prediction_order_method
 
static int select_blocksize(int samplerate, int block_time_ms)
Set blocksize based on samplerate.
 
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
 
static uint64_t find_subframe_rice_params(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
 
#define ORDER_METHOD_4LEVEL
 
static double val(void *priv, double ch)
 
#define AV_CH_LAYOUT_STEREO
 
#define AV_CH_LAYOUT_QUAD
 
@ FF_LPC_TYPE_DEFAULT
use the codec default LPC type
 
const int32_t ff_flac_blocksize_table[16]
 
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
static void write_subframes(FlacEncodeContext *s)
 
int ff_flac_get_max_frame_size(int blocksize, int ch, int bps)
Calculate an estimate for the maximum frame size based on verbatim mode.
 
#define av_assert0(cond)
assert() equivalent, that is always enabled.
 
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
 
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
 
static void remove_wasted_bits(FlacEncodeContext *s)
 
#define FLAC_SUBFRAME_LPC
 
#define COPY_SAMPLES(bits)
 
static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, uint64_t sums[32][MAX_PARTITIONS], int n, int pred_order, int max_param, int exact)
 
#define FLAC_SUBFRAME_VERBATIM
 
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, int size)
Allocate new information of a packet.
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
#define FLAC_SUBFRAME_CONSTANT
 
const int ff_flac_sample_rate_table[16]
 
#define LIBAVUTIL_VERSION_INT
 
Describe the class of an AVClass context structure.
 
FlacSubframe subframes[FLAC_MAX_CHANNELS]
 
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
 
attribute_deprecated int max_prediction_order
 
#define FLAC_SUBFRAME_FIXED
 
const char * av_default_item_name(void *ptr)
Return the context name.
 
#define AV_CH_LAYOUT_5POINT1
 
#define FLAC_STREAMINFO_SIZE
 
#define ORDER_METHOD_SEARCH
 
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int min_shift, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
 
#define AV_CH_FRONT_CENTER
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static uint64_t rice_count_exact(const int32_t *res, int n, int k)
 
int max_encoded_framesize
 
static int encode_residual_ch(FlacEncodeContext *s, int ch)
 
static int get_max_p_order(int max_porder, int n, int order)
 
#define ORDER_METHOD_8LEVEL
 
static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
 
unsigned int md5_buffer_size
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
static void channel_decorrelation(FlacEncodeContext *s)
Perform stereo channel decorrelation.
 
@ FF_LPC_TYPE_NB
Not part of ABI.
 
enum AVSampleFormat sample_fmt
audio sample format
 
static int encode_frame(FlacEncodeContext *s)
 
static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, uint64_t sums[32][MAX_PARTITIONS])
 
int32_t residual[FLAC_MAX_BLOCKSIZE+11]
 
CompressionOptions options
 
static const uint8_t header[24]
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
 
#define AV_CH_LAYOUT_5POINT1_BACK
 
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
 
static const AVOption options[]
 
int32_t coefs[MAX_LPC_ORDER]
 
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
 
int channels
number of audio channels
 
#define AV_CH_LAYOUT_5POINT0
 
static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
 
void av_md5_init(AVMD5 *ctx)
Initialize MD5 hashing.
 
#define i(width, name, range_min, range_max)
 
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
 
static int put_bits_count(PutBitContext *s)
 
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
 
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
 
static void write_utf8(PutBitContext *pb, uint32_t val)
 
static int count_frame_header(FlacEncodeContext *s)
 
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
 
AVSampleFormat
Audio sample formats.
 
static void write_frame_header(FlacEncodeContext *s)
 
static void write_frame_footer(FlacEncodeContext *s)
 
@ AV_SAMPLE_FMT_S16
signed 16 bits
 
const char * name
Name of the codec implementation.
 
static void copy_samples(FlacEncodeContext *s, const void *samples)
Copy channel-interleaved input samples into separate subframes.
 
void av_md5_final(AVMD5 *ctx, uint8_t *dst)
Finish hashing and output digest value.
 
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, int max_rice_param)
 
static uint64_t calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact)
 
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
void av_md5_update(AVMD5 *ctx, const uint8_t *src, int len)
Update hash value.
 
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order)
 
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
 
#define FLAC_MAX_CHANNELS
 
#define MAX_LPC_PRECISION
 
main external API structure.
 
uint64_t rc_sums[32][MAX_PARTITIONS]
 
uint32_t rc_udata[FLAC_MAX_BLOCKSIZE]
 
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
 
struct AVMD5 * av_md5_alloc(void)
Allocate an AVMD5 context.
 
@ AV_PKT_DATA_NEW_EXTRADATA
The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format that the extradata buffer was...
 
static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
 
static void frame_end(MpegEncContext *s)
 
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
static void init_frame(FlacEncodeContext *s, int nb_samples)
 
int params[MAX_PARTITIONS]
 
static int shift(int a, int b)
 
#define FF_DISABLE_DEPRECATION_WARNINGS
 
#define FLAC_MAX_BLOCKSIZE
 
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
 
static av_always_inline int diff(const uint32_t a, const uint32_t b)
 
This structure stores compressed data.
 
enum CodingMode coding_mode
 
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
 
static int find_optimal_param(uint64_t sum, int n, int max_param)
Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
 
static av_cold void dprint_compression_options(FlacEncodeContext *s)
 
static int update_md5_sum(FlacEncodeContext *s, const void *samples)
 
static av_cold int flac_encode_close(AVCodecContext *avctx)
 
attribute_deprecated int min_prediction_order
 
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
 
static const AVClass flac_encoder_class
 
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
Write streaminfo metadata block to byte array.
 
#define ORDER_METHOD_2LEVEL
 
#define FLAC_MIN_BLOCKSIZE
 
@ FF_LPC_TYPE_NONE
do not use LPC prediction or use all zero coefficients
 
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
 
@ FLAC_CHMODE_INDEPENDENT
 
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
 
@ AV_SAMPLE_FMT_S32
signed 32 bits
 
@ FF_LPC_TYPE_LEVINSON
Levinson-Durbin recursion.
 
#define rice_encode_count(sum, n, k)
 
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
 
@ FF_LPC_TYPE_FIXED
fixed LPC coefficients
 
attribute_deprecated int side_data_only_packets
Encoding only and set by default.