Go to the documentation of this file.
149 #define FULLPEL_MODE 1
150 #define HALFPEL_MODE 2
151 #define THIRDPEL_MODE 3
152 #define PREDICT_MODE 4
164 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
165 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
166 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
167 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
171 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
172 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
173 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
174 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
180 { 0, 2 }, { 1, 1 }, { 2, 0 },
181 { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
182 { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
183 { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
184 { 2, 4 }, { 3, 3 }, { 4, 2 },
190 { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
191 { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
192 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
193 { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
194 { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
195 { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
196 { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
197 { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
198 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
199 { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
200 { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
201 { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
204 static const struct {
208 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
209 { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
210 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
211 { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
215 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
216 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
217 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
218 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
229 for (
i = 0;
i < 4;
i++) {
230 const int z0 = 13 * (
input[4 *
i + 0] +
input[4 *
i + 2]);
231 const int z1 = 13 * (
input[4 *
i + 0] -
input[4 *
i + 2]);
232 const int z2 = 7 *
input[4 *
i + 1] - 17 *
input[4 *
i + 3];
233 const int z3 = 17 *
input[4 *
i + 1] + 7 *
input[4 *
i + 3];
235 temp[4 *
i + 0] = z0 + z3;
236 temp[4 *
i + 1] = z1 + z2;
237 temp[4 *
i + 2] = z1 - z2;
238 temp[4 *
i + 3] = z0 - z3;
241 for (
i = 0;
i < 4;
i++) {
242 const int offset = x_offset[
i];
243 const int z0 = 13 * (
temp[4 * 0 +
i] +
temp[4 * 2 +
i]);
244 const int z1 = 13 * (
temp[4 * 0 +
i] -
temp[4 * 2 +
i]);
245 const int z2 = 7 *
temp[4 * 1 +
i] - 17 *
temp[4 * 3 +
i];
246 const int z3 = 17 *
temp[4 * 1 +
i] + 7 *
temp[4 * 3 +
i];
264 : qmul * (
block[0] >> 3) / 2);
268 for (
i = 0;
i < 4;
i++) {
269 const int z0 = 13 * (
block[0 + 4 *
i] +
block[2 + 4 *
i]);
270 const int z1 = 13 * (
block[0 + 4 *
i] -
block[2 + 4 *
i]);
271 const int z2 = 7 *
block[1 + 4 *
i] - 17 *
block[3 + 4 *
i];
272 const int z3 = 17 *
block[1 + 4 *
i] + 7 *
block[3 + 4 *
i];
274 block[0 + 4 *
i] = z0 + z3;
275 block[1 + 4 *
i] = z1 + z2;
276 block[2 + 4 *
i] = z1 - z2;
277 block[3 + 4 *
i] = z0 - z3;
280 for (
i = 0;
i < 4;
i++) {
281 const unsigned z0 = 13 * (
block[
i + 4 * 0] +
block[
i + 4 * 2]);
282 const unsigned z1 = 13 * (
block[
i + 4 * 0] -
block[
i + 4 * 2]);
283 const unsigned z2 = 7 *
block[
i + 4 * 1] - 17 *
block[
i + 4 * 3];
284 const unsigned z3 = 17 *
block[
i + 4 * 1] + 7 *
block[
i + 4 * 3];
285 const int rr = (
dc + 0x80000
u);
293 memset(
block, 0, 16 *
sizeof(int16_t));
299 static const uint8_t *
const scan_patterns[4] = {
305 const int intra = 3 *
type >> 2;
308 for (limit = (16 >> intra);
index < 16;
index = limit, limit += 8) {
313 sign = (vlc & 1) ? 0 : -1;
320 }
else if (vlc < 4) {
333 level = (vlc >> 3) + ((
run == 0) ? 8 : ((
run < 2) ? 2 : ((
run < 5) ? 0 : -1)));
336 level = (vlc >> 4) + ((
run == 0) ? 4 : ((
run < 3) ? 2 : ((
run < 10) ? 1 : 0)));
357 int i,
int list,
int part_width)
359 const int topright_ref =
s->ref_cache[
list][
i - 8 + part_width];
362 *
C =
s->mv_cache[
list][
i - 8 + part_width];
365 *
C =
s->mv_cache[
list][
i - 8 - 1];
366 return s->ref_cache[
list][
i - 8 - 1];
378 int part_width,
int list,
379 int ref,
int *
const mx,
int *
const my)
381 const int index8 =
scan8[n];
382 const int top_ref =
s->ref_cache[
list][index8 - 8];
383 const int left_ref =
s->ref_cache[
list][index8 - 1];
384 const int16_t *
const A =
s->mv_cache[
list][index8 - 1];
385 const int16_t *
const B =
s->mv_cache[
list][index8 - 8];
387 int diagonal_ref, match_count;
398 match_count = (diagonal_ref ==
ref) + (top_ref ==
ref) + (left_ref ==
ref);
399 if (match_count > 1) {
402 }
else if (match_count == 1) {
403 if (left_ref ==
ref) {
406 }
else if (top_ref ==
ref) {
428 int mx,
int my,
int dxy,
429 int thirdpel,
int dir,
int avg)
431 const SVQ3Frame *pic = (dir == 0) ?
s->last_pic :
s->next_pic;
434 int blocksize = 2 - (
width >> 3);
435 int linesize =
s->cur_pic->f->linesize[0];
436 int uvlinesize =
s->cur_pic->f->linesize[1];
441 if (mx < 0 || mx >=
s->h_edge_pos -
width - 1 ||
442 my < 0 || my >=
s->v_edge_pos -
height - 1) {
449 dest =
s->cur_pic->f->data[0] + x + y * linesize;
450 src = pic->
f->
data[0] + mx + my * linesize;
453 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
456 mx, my,
s->h_edge_pos,
s->v_edge_pos);
457 src =
s->edge_emu_buffer;
460 (
avg ?
s->tdsp.avg_tpel_pixels_tab
461 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src, linesize,
464 (
avg ?
s->hdsp.avg_pixels_tab
465 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src, linesize,
469 mx = mx + (mx < (
int) x) >> 1;
470 my = my + (my < (
int) y) >> 1;
475 for (
i = 1;
i < 3;
i++) {
476 dest =
s->cur_pic->f->data[
i] + (x >> 1) + (y >> 1) * uvlinesize;
477 src = pic->
f->
data[
i] + mx + my * uvlinesize;
480 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
481 uvlinesize, uvlinesize,
483 mx, my, (
s->h_edge_pos >> 1),
485 src =
s->edge_emu_buffer;
488 (
avg ?
s->tdsp.avg_tpel_pixels_tab
489 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src,
493 (
avg ?
s->hdsp.avg_pixels_tab
494 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src,
504 int i, j, k, mx, my, dx, dy, x, y;
505 const int part_width = ((
size & 5) == 4) ? 4 : 16 >> (
size & 1);
506 const int part_height = 16 >> ((unsigned)(
size + 1) / 3);
508 const int h_edge_pos = 6 * (
s->h_edge_pos - part_width) - extra_width;
509 const int v_edge_pos = 6 * (
s->v_edge_pos - part_height) - extra_width;
511 for (
i = 0;
i < 16;
i += part_height)
512 for (j = 0; j < 16; j += part_width) {
513 const int b_xy = (4 *
s->mb_x + (j >> 2)) +
514 (4 *
s->mb_y + (
i >> 2)) *
s->b_stride;
516 x = 16 *
s->mb_x + j;
517 y = 16 *
s->mb_y +
i;
518 k = (j >> 2 & 1) + (
i >> 1 & 2) +
519 (j >> 1 & 4) + (
i & 8);
524 mx =
s->next_pic->motion_val[0][b_xy][0] * 2;
525 my =
s->next_pic->motion_val[0][b_xy][1] * 2;
528 mx = mx *
s->frame_num_offset /
529 s->prev_frame_num_offset + 1 >> 1;
530 my = my *
s->frame_num_offset /
531 s->prev_frame_num_offset + 1 >> 1;
533 mx = mx * (
s->frame_num_offset -
s->prev_frame_num_offset) /
534 s->prev_frame_num_offset + 1 >> 1;
535 my = my * (
s->frame_num_offset -
s->prev_frame_num_offset) /
536 s->prev_frame_num_offset + 1 >> 1;
541 mx =
av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
542 my =
av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
551 if (dx != (int16_t)dx || dy != (int16_t)dy) {
560 mx = (mx + 1 >> 1) + dx;
561 my = (my + 1 >> 1) + dy;
562 fx = (unsigned)(mx + 0x30000) / 3 - 0x10000;
563 fy = (unsigned)(my + 0x30000) / 3 - 0x10000;
564 dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
567 fx, fy, dxy, 1, dir,
avg);
571 mx = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000;
572 my = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000;
573 dxy = (mx & 1) + 2 * (my & 1);
576 mx >> 1, my >> 1, dxy, 0, dir,
avg);
580 mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000;
581 my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000;
584 mx, my, 0, 0, dir,
avg);
593 if (part_height == 8 &&
i < 8) {
596 if (part_width == 8 && j < 8)
599 if (part_width == 8 && j < 8)
601 if (part_width == 4 || part_height == 4)
607 part_width >> 2, part_height >> 2,
s->b_stride,
615 int mb_type,
const int *block_offset,
620 for (
i = 0;
i < 16;
i++)
621 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
622 uint8_t *
const ptr = dest_y + block_offset[
i];
631 const int *block_offset,
636 int qscale =
s->qscale;
639 for (
i = 0;
i < 16;
i++) {
640 uint8_t *
const ptr = dest_y + block_offset[
i];
641 const int dir =
s->intra4x4_pred_mode_cache[
scan8[
i]];
646 const int topright_avail = (
s->topright_samples_available <<
i) & 0x8000;
648 if (!topright_avail) {
649 tr = ptr[3 - linesize] * 0x01010101
u;
652 topright = ptr + 4 - linesize;
656 s->hpc.pred4x4[dir](ptr, topright, linesize);
657 nnz =
s->non_zero_count_cache[
scan8[
i]];
663 s->hpc.pred16x16[
s->intra16x16_pred_mode](dest_y, linesize);
670 const int mb_x =
s->mb_x;
671 const int mb_y =
s->mb_y;
672 const int mb_xy =
s->mb_xy;
673 const int mb_type =
s->cur_pic->mb_type[mb_xy];
674 uint8_t *dest_y, *dest_cb, *dest_cr;
675 int linesize, uvlinesize;
677 const int *block_offset = &
s->block_offset[0];
678 const int block_h = 16 >> 1;
680 linesize =
s->cur_pic->f->linesize[0];
681 uvlinesize =
s->cur_pic->f->linesize[1];
683 dest_y =
s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
684 dest_cb =
s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
685 dest_cr =
s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
687 s->vdsp.prefetch(dest_y + (
s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
688 s->vdsp.prefetch(dest_cb + (
s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
691 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cb, uvlinesize);
692 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cr, uvlinesize);
700 uint8_t *dest[2] = { dest_cb, dest_cr };
701 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 1,
702 s->dequant4_coeff[4][0]);
703 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 2,
704 s->dequant4_coeff[4][0]);
705 for (j = 1; j < 3; j++) {
706 for (
i = j * 16;
i < j * 16 + 4;
i++)
707 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
708 uint8_t *
const ptr = dest[j - 1] + block_offset[
i];
718 int i, j, k, m, dir,
mode;
722 const int mb_xy =
s->mb_xy;
723 const int b_xy = 4 *
s->mb_x + 4 *
s->mb_y *
s->b_stride;
725 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
726 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
727 s->topright_samples_available = 0xFFFF;
731 s->next_pic->mb_type[mb_xy] == -1) {
741 mb_type =
FFMIN(
s->next_pic->mb_type[mb_xy], 6);
749 }
else if (mb_type < 8) {
750 if (
s->thirdpel_flag &&
s->halfpel_flag == !
get_bits1(&
s->gb_slice))
752 else if (
s->halfpel_flag &&
767 for (m = 0; m < 2; m++) {
768 if (
s->mb_x > 0 &&
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6] != -1) {
769 for (
i = 0;
i < 4;
i++)
771 s->cur_pic->motion_val[m][b_xy - 1 +
i *
s->b_stride]);
773 for (
i = 0;
i < 4;
i++)
777 memcpy(
s->mv_cache[m][
scan8[0] - 1 * 8],
778 s->cur_pic->motion_val[m][b_xy -
s->b_stride],
779 4 * 2 *
sizeof(int16_t));
780 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8],
783 if (
s->mb_x <
s->mb_width - 1) {
785 s->cur_pic->motion_val[m][b_xy -
s->b_stride + 4]);
786 s->ref_cache[m][
scan8[0] + 4 - 1 * 8] =
787 (
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride + 1] + 6] == -1 ||
793 s->cur_pic->motion_val[m][b_xy -
s->b_stride - 1]);
794 s->ref_cache[m][
scan8[0] - 1 - 1 * 8] =
799 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8 - 1],
815 for (
i = 0;
i < 4;
i++)
816 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
817 0, 4 * 2 *
sizeof(int16_t));
823 for (
i = 0;
i < 4;
i++)
824 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
825 0, 4 * 2 *
sizeof(int16_t));
830 }
else if (mb_type == 8 || mb_type == 33) {
831 int8_t *i4x4 =
s->intra4x4_pred_mode +
s->mb2br_xy[
s->mb_xy];
832 int8_t *i4x4_cache =
s->intra4x4_pred_mode_cache;
834 memset(
s->intra4x4_pred_mode_cache, -1, 8 * 5 *
sizeof(int8_t));
838 for (
i = 0;
i < 4;
i++)
839 s->intra4x4_pred_mode_cache[
scan8[0] - 1 +
i * 8] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6 -
i];
840 if (
s->intra4x4_pred_mode_cache[
scan8[0] - 1] == -1)
841 s->left_samples_available = 0x5F5F;
844 s->intra4x4_pred_mode_cache[4 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 0];
845 s->intra4x4_pred_mode_cache[5 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 1];
846 s->intra4x4_pred_mode_cache[6 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 2];
847 s->intra4x4_pred_mode_cache[7 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 3];
849 if (
s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
850 s->top_samples_available = 0x33FF;
854 for (
i = 0;
i < 16;
i += 2) {
859 "luma prediction:%"PRIu32
"\n", vlc);
864 top = &
s->intra4x4_pred_mode_cache[
scan8[
i] - 8];
869 if (
left[1] == -1 ||
left[2] == -1) {
875 for (
i = 0;
i < 4;
i++)
876 memset(&
s->intra4x4_pred_mode_cache[
scan8[0] + 8 *
i],
DC_PRED, 4);
880 i4x4[4] = i4x4_cache[7 + 8 * 3];
881 i4x4[5] = i4x4_cache[7 + 8 * 2];
882 i4x4[6] = i4x4_cache[7 + 8 * 1];
886 s->avctx,
s->top_samples_available,
887 s->left_samples_available);
889 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
890 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
892 for (
i = 0;
i < 4;
i++)
895 s->top_samples_available = 0x33FF;
896 s->left_samples_available = 0x5F5F;
902 dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
905 s->left_samples_available, dir, 0)) < 0) {
907 return s->intra16x16_pred_mode;
915 for (
i = 0;
i < 4;
i++)
916 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
917 0, 4 * 2 *
sizeof(int16_t));
919 for (
i = 0;
i < 4;
i++)
920 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
921 0, 4 * 2 *
sizeof(int16_t));
925 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy],
DC_PRED, 8);
928 memset(
s->non_zero_count_cache + 8, 0, 14 * 8 *
sizeof(
uint8_t));
945 if (
s->qscale > 31
u) {
955 "error while decoding intra luma dc\n");
964 for (
i = 0;
i < 4;
i++)
965 if ((cbp & (1 <<
i))) {
966 for (j = 0; j < 4; j++) {
967 k =
index ? (1 * (j & 1) + 2 * (
i & 1) +
968 2 * (j & 2) + 4 * (
i & 2))
970 s->non_zero_count_cache[
scan8[k]] = 1;
974 "error while decoding block\n");
981 for (
i = 1;
i < 3; ++
i)
984 "error while decoding chroma dc block\n");
989 for (
i = 1;
i < 3;
i++) {
990 for (j = 0; j < 4; j++) {
992 s->non_zero_count_cache[
scan8[k]] = 1;
996 "error while decoding chroma ac block\n");
1006 s->cur_pic->mb_type[mb_xy] = mb_type;
1018 const int mb_xy =
s->mb_xy;
1029 int slice_bits, slice_bytes, slice_length;
1030 int length =
header >> 5 & 3;
1032 slice_length =
show_bits(&
s->gb, 8 * length);
1033 slice_bits = slice_length * 8;
1034 slice_bytes = slice_length + length - 1;
1046 memcpy(
s->slice_buf,
s->gb.buffer +
s->gb.index / 8, slice_bytes);
1048 if (
s->watermark_key) {
1055 memmove(
s->slice_buf, &
s->slice_buf[slice_length], length - 1);
1067 if ((
header & 0x9F) == 2) {
1068 i = (
s->mb_num < 64) ? 6 : (1 +
av_log2(
s->mb_num - 1));
1082 if (
s->has_watermark)
1093 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy - 1] + 3,
1094 -1, 4 *
sizeof(int8_t));
1095 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_x],
1096 -1, 8 *
sizeof(int8_t) *
s->mb_x);
1099 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_stride],
1100 -1, 8 *
sizeof(int8_t) * (
s->mb_width -
s->mb_x));
1103 s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride - 1] + 3] = -1;
1112 const int max_qp = 51;
1114 for (q = 0; q < max_qp + 1; q++) {
1117 for (x = 0; x < 16; x++)
1118 s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
1127 unsigned char *extradata;
1128 unsigned char *extradata_end;
1130 int marker_found = 0;
1133 s->cur_pic = &
s->frames[0];
1134 s->last_pic = &
s->frames[1];
1135 s->next_pic = &
s->frames[2];
1140 if (!
s->cur_pic->f || !
s->last_pic->f || !
s->next_pic->f)
1157 s->halfpel_flag = 1;
1158 s->thirdpel_flag = 1;
1159 s->has_watermark = 0;
1162 extradata = (
unsigned char *)avctx->
extradata;
1166 if (!memcmp(extradata,
"SEQH", 4)) {
1177 int frame_size_code;
1178 int unk0, unk1, unk2, unk3, unk4;
1182 if (
size > extradata_end - extradata - 8)
1187 frame_size_code =
get_bits(&gb, 3);
1188 switch (frame_size_code) {
1241 unk0, unk1, unk2, unk3, unk4);
1248 if (
s->has_watermark) {
1256 unsigned long buf_len = watermark_width *
1257 watermark_height * 4;
1261 if (watermark_height <= 0 ||
1262 (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
1270 watermark_width, watermark_height);
1272 "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
1274 if (uncompress(buf, &buf_len, extradata + 8 +
offset,
1277 "could not uncompress watermark logo\n");
1283 s->watermark_key =
s->watermark_key << 16 |
s->watermark_key;
1285 "watermark key %#"PRIx32
"\n",
s->watermark_key);
1289 "this svq3 file contains watermark which need zlib support compiled in\n");
1295 s->mb_width = (avctx->
width + 15) / 16;
1296 s->mb_height = (avctx->
height + 15) / 16;
1297 s->mb_stride =
s->mb_width + 1;
1298 s->mb_num =
s->mb_width *
s->mb_height;
1299 s->b_stride = 4 *
s->mb_width;
1300 s->h_edge_pos =
s->mb_width * 16;
1301 s->v_edge_pos =
s->mb_height * 16;
1303 s->intra4x4_pred_mode =
av_mallocz(
s->mb_stride * 2 * 8);
1304 if (!
s->intra4x4_pred_mode)
1307 s->mb2br_xy =
av_mallocz(
s->mb_stride * (
s->mb_height + 1) *
1308 sizeof(*
s->mb2br_xy));
1312 for (y = 0; y <
s->mb_height; y++)
1313 for (x = 0; x <
s->mb_width; x++) {
1314 const int mb_xy = x + y *
s->mb_stride;
1316 s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 *
s->mb_stride));
1327 for (
i = 0;
i < 2;
i++) {
1338 const int big_mb_num =
s->mb_stride * (
s->mb_height + 1) + 1;
1339 const int b4_stride =
s->mb_width * 4 + 1;
1340 const int b4_array_size = b4_stride *
s->mb_height * 4;
1351 for (
i = 0;
i < 2;
i++) {
1368 if (!
s->edge_emu_buffer) {
1370 if (!
s->edge_emu_buffer)
1384 int buf_size = avpkt->
size;
1390 if (buf_size == 0) {
1391 if (
s->next_pic->f->data[0] && !
s->low_delay && !
s->last_frame_output) {
1395 s->last_frame_output = 1;
1401 s->mb_x =
s->mb_y =
s->mb_xy = 0;
1403 if (
s->watermark_key) {
1407 memcpy(
s->buf, avpkt->
data, buf_size);
1420 s->pict_type =
s->slice_type;
1428 s->cur_pic->f->pict_type =
s->pict_type;
1435 for (
i = 0;
i < 16;
i++) {
1437 s->block_offset[48 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[0] * ((
scan8[
i] -
scan8[0]) >> 3);
1439 for (
i = 0;
i < 16;
i++) {
1440 s->block_offset[16 +
i] =
1441 s->block_offset[32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 4 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1442 s->block_offset[48 + 16 +
i] =
1443 s->block_offset[48 + 32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1447 if (!
s->last_pic->f->data[0]) {
1453 memset(
s->last_pic->f->data[0], 0, avctx->
height *
s->last_pic->f->linesize[0]);
1454 memset(
s->last_pic->f->data[1], 0x80, (avctx->
height / 2) *
1455 s->last_pic->f->linesize[1]);
1456 memset(
s->last_pic->f->data[2], 0x80, (avctx->
height / 2) *
1457 s->last_pic->f->linesize[2]);
1466 memset(
s->next_pic->f->data[0], 0, avctx->
height *
s->next_pic->f->linesize[0]);
1467 memset(
s->next_pic->f->data[1], 0x80, (avctx->
height / 2) *
1468 s->next_pic->f->linesize[1]);
1469 memset(
s->next_pic->f->data[2], 0x80, (avctx->
height / 2) *
1470 s->next_pic->f->linesize[2]);
1476 "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
1478 s->halfpel_flag,
s->thirdpel_flag,
1479 s->adaptive_quant,
s->qscale,
s->slice_num);
1486 if (
s->next_p_frame_damaged) {
1490 s->next_p_frame_damaged = 0;
1494 s->frame_num_offset =
s->slice_num -
s->prev_frame_num;
1496 if (
s->frame_num_offset < 0)
1497 s->frame_num_offset += 256;
1498 if (
s->frame_num_offset == 0 ||
1499 s->frame_num_offset >=
s->prev_frame_num_offset) {
1504 s->prev_frame_num =
s->frame_num;
1505 s->frame_num =
s->slice_num;
1506 s->prev_frame_num_offset =
s->frame_num -
s->prev_frame_num;
1508 if (
s->prev_frame_num_offset < 0)
1509 s->prev_frame_num_offset += 256;
1512 for (m = 0; m < 2; m++) {
1514 for (
i = 0;
i < 4;
i++) {
1516 for (j = -1; j < 4; j++)
1517 s->ref_cache[m][
scan8[0] + 8 *
i + j] = 1;
1523 for (
s->mb_y = 0;
s->mb_y <
s->mb_height;
s->mb_y++) {
1524 for (
s->mb_x = 0;
s->mb_x <
s->mb_width;
s->mb_x++) {
1526 s->mb_xy =
s->mb_x +
s->mb_y *
s->mb_stride;
1535 if (
s->slice_type !=
s->pict_type) {
1549 "error while decoding MB %d %d\n",
s->mb_x,
s->mb_y);
1553 if (mb_type != 0 ||
s->cbp)
1557 s->cur_pic->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride] =
1562 s->last_pic->f->data[0] ?
s->last_pic->f :
NULL,
1569 if (
s->mb_y !=
s->mb_height ||
s->mb_x !=
s->mb_width) {
1581 else if (
s->last_pic->f->data[0])
1587 if (
s->last_pic->f->data[0] ||
s->low_delay)
uint8_t * edge_emu_buffer
static const uint32_t svq3_dequant_coeff[32]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
enum AVPictureType slice_type
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int svq3_decode_slice_header(AVCodecContext *avctx)
#define FFSWAP(type, a, b)
#define u(width, name, range_min, range_max)
const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM+1]
static const int8_t mv[256][2]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
unsigned int left_samples_available
static int get_bits_count(const GetBitContext *s)
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
const uint8_t ff_h264_golomb_to_inter_cbp[48]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
Full range content.
void * av_mallocz_array(size_t nmemb, size_t size)
static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic)
const uint8_t ff_h264_golomb_to_intra4x4_cbp[48]
#define MB_TYPE_INTRA16x16
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
unsigned int topright_samples_available
enum AVDiscard skip_frame
Skip decoding for selected frames.
int flags
AV_CODEC_FLAG_*.
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
const uint8_t ff_h264_golomb_to_pict_type[5]
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int8_t intra4x4_pred_mode_cache[5 *8]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
int has_b_frames
Size of the frame reordering buffer in the decoder.
enum AVPictureType pict_type
static int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
av_cold void ff_tpeldsp_init(TpelDSPContext *c)
static enum AVPixelFormat pix_fmts[]
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my)
Get the predicted MV.
unsigned int top_samples_available
int prev_frame_num_offset
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int16_t(*[2] motion_val)[2]
@ AVDISCARD_ALL
discard all
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
const uint8_t ff_h264_chroma_dc_scan[4]
int16_t mb_luma_dc[3][16 *2]
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
Context for storing H.264 DSP functions.
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static void init_dequant4_coeff_table(SVQ3Context *s)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
void ff_draw_horiz_band(AVCodecContext *avctx, AVFrame *cur, AVFrame *last, int y, int h, int picture_structure, int first_field, int low_delay)
Draw a horizontal band if supported.
static void hl_decode_mb(SVQ3Context *s)
static int get_interleaved_se_golomb(GetBitContext *gb)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const uint8_t header[24]
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const uint8_t ff_h264_quant_rem6[QP_MAX_NUM+1]
static void skip_bits1(GetBitContext *s)
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
int16_t(*[2] motion_val_buf)[2]
#define AV_LOG_INFO
Standard information.
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
#define DECLARE_ALIGNED(n, t, v)
static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
int16_t mv_cache[2][5 *8][2]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
uint8_t non_zero_count_cache[15 *8]
#define PART_NOT_AVAILABLE
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
static const uint8_t svq3_scan[16]
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
static const int8_t svq3_pred_1[6][6][5]
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static int skip_1stop_8data_bits(GetBitContext *gb)
main external API structure.
const uint8_t ff_h264_dequant4_coeff_init[6][3]
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
int block_offset[2 *(16 *3)]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
int ff_h264_check_intra4x4_pred_mode(int8_t *pred_mode_cache, void *logctx, int top_samples_available, int left_samples_available)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...
const IMbInfo ff_h264_i_mb_type_info[26]
static void fill_rectangle(int x, int y, int w, int h)
static const uint8_t scan8[16 *3+3]
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static const uint8_t luma_dc_zigzag_scan[16]
const uint8_t ff_h264_quant_div6[QP_MAX_NUM+1]
Context for storing H.264 prediction functions.
static int shift(int a, int b)
static void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg)
@ AV_PICTURE_TYPE_P
Predicted.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static av_cold int svq3_decode_end(AVCodecContext *avctx)
int frame_number
Frame counter, set by libavcodec.
#define avpriv_request_sample(...)
static const struct @134 svq3_dct_tables[2][16]
uint32_t dequant4_coeff[QP_MAX_NUM+1][16]
int8_t ref_cache[2][5 *8]
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int svq3_decode_init(AVCodecContext *avctx)
@ AVDISCARD_NONREF
discard all non reference
int8_t * intra4x4_pred_mode
static const uint8_t svq3_pred_0[25][2]
int ff_h264_check_intra_pred_mode(void *logctx, int top_samples_available, int left_samples_available, int mode, int is_chroma)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...