Go to the documentation of this file.
33 #define FF_BUFQUEUE_SIZE 129
41 #define SIZE FF_BUFQUEUE_SIZE
68 #define OFFSET(x) offsetof(ATADenoiseContext, x)
69 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
70 #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
133 if (!(
s->size & 1)) {
137 s->radius =
s->size / 2;
147 #define WFILTER_ROW(type, name) \
148 static void fweight_row##name(const uint8_t *ssrc, uint8_t *ddst, \
149 const uint8_t *ssrcf[SIZE], \
150 int w, int mid, int size, \
151 int thra, int thrb, const float *weights) \
153 const type *src = (const type *)ssrc; \
154 const type **srcf = (const type **)ssrcf; \
155 type *dst = (type *)ddst; \
157 for (int x = 0; x < w; x++) { \
158 const int srcx = src[x]; \
159 unsigned lsumdiff = 0, rsumdiff = 0; \
160 unsigned ldiff, rdiff; \
166 for (int j = mid - 1, i = mid + 1; j >= 0 && i < size; j--, i++) { \
167 srcjx = srcf[j][x]; \
169 ldiff = FFABS(srcx - srcjx); \
171 if (ldiff > thra || \
175 sum += srcjx * weights[j]; \
176 wsum += weights[j]; \
178 srcix = srcf[i][x]; \
180 rdiff = FFABS(srcx - srcix); \
182 if (rdiff > thra || \
186 sum += srcix * weights[i]; \
187 wsum += weights[i]; \
190 dst[x] = lrintf(sum / wsum); \
197 #define WFILTER_ROW_SERIAL(type, name) \
198 static void fweight_row##name##_serial(const uint8_t *ssrc, uint8_t *ddst, \
199 const uint8_t *ssrcf[SIZE], \
200 int w, int mid, int size, \
201 int thra, int thrb, \
202 const float *weights) \
204 const type *src = (const type *)ssrc; \
205 const type **srcf = (const type **)ssrcf; \
206 type *dst = (type *)ddst; \
208 for (int x = 0; x < w; x++) { \
209 const int srcx = src[x]; \
210 unsigned lsumdiff = 0, rsumdiff = 0; \
211 unsigned ldiff, rdiff; \
217 for (int j = mid - 1; j >= 0; j--) { \
218 srcjx = srcf[j][x]; \
220 ldiff = FFABS(srcx - srcjx); \
222 if (ldiff > thra || \
226 sum += srcjx * weights[j]; \
227 wsum += weights[j]; \
230 for (int i = mid + 1; i < size; i++) { \
231 srcix = srcf[i][x]; \
233 rdiff = FFABS(srcx - srcix); \
235 if (rdiff > thra || \
239 sum += srcix * weights[i]; \
240 wsum += weights[i]; \
243 dst[x] = lrintf(sum / wsum); \
250 #define FILTER_ROW(type, name) \
251 static void filter_row##name(const uint8_t *ssrc, uint8_t *ddst, \
252 const uint8_t *ssrcf[SIZE], \
253 int w, int mid, int size, \
254 int thra, int thrb, const float *weights) \
256 const type *src = (const type *)ssrc; \
257 const type **srcf = (const type **)ssrcf; \
258 type *dst = (type *)ddst; \
260 for (int x = 0; x < w; x++) { \
261 const int srcx = src[x]; \
262 unsigned lsumdiff = 0, rsumdiff = 0; \
263 unsigned ldiff, rdiff; \
264 unsigned sum = srcx; \
268 for (int j = mid - 1, i = mid + 1; j >= 0 && i < size; j--, i++) { \
269 srcjx = srcf[j][x]; \
271 ldiff = FFABS(srcx - srcjx); \
273 if (ldiff > thra || \
279 srcix = srcf[i][x]; \
281 rdiff = FFABS(srcx - srcix); \
283 if (rdiff > thra || \
290 dst[x] = (sum + ((r + l + 1) >> 1)) / (r + l + 1); \
297 #define FILTER_ROW_SERIAL(type, name) \
298 static void filter_row##name##_serial(const uint8_t *ssrc, uint8_t *ddst, \
299 const uint8_t *ssrcf[SIZE], \
300 int w, int mid, int size, \
301 int thra, int thrb, \
302 const float *weights) \
304 const type *src = (const type *)ssrc; \
305 const type **srcf = (const type **)ssrcf; \
306 type *dst = (type *)ddst; \
308 for (int x = 0; x < w; x++) { \
309 const int srcx = src[x]; \
310 unsigned lsumdiff = 0, rsumdiff = 0; \
311 unsigned ldiff, rdiff; \
312 unsigned sum = srcx; \
316 for (int j = mid - 1; j >= 0; j--) { \
317 srcjx = srcf[j][x]; \
319 ldiff = FFABS(srcx - srcjx); \
321 if (ldiff > thra || \
328 for (int i = mid + 1; i < size; i++) { \
329 srcix = srcf[i][x]; \
331 rdiff = FFABS(srcx - srcix); \
333 if (rdiff > thra || \
340 dst[x] = (sum + ((r + l + 1) >> 1)) / (r + l + 1); \
353 const int size =
s->size;
354 const int mid =
s->mid;
357 for (p = 0; p <
s->nb_planes; p++) {
358 const float *
weights =
s->weights[p];
359 const int h =
s->planeheight[p];
360 const int w =
s->planewidth[p];
361 const int slice_start = (
h * jobnr) / nb_jobs;
362 const int slice_end = (
h * (jobnr+1)) / nb_jobs;
364 uint8_t *dst =
out->data[p] + slice_start *
out->linesize[p];
365 const int thra =
s->thra[p];
366 const int thrb =
s->thrb[p];
368 const int *linesize = (
const int *)
s->linesize[p];
371 if (!((1 << p) &
s->planes)) {
378 srcf[
i] =
data[
i] + slice_start * linesize[
i];
380 for (y = slice_start; y <
slice_end; y++) {
383 dst +=
out->linesize[p];
384 src +=
in->linesize[p];
387 srcf[
i] += linesize[
i];
401 s->nb_planes =
desc->nb_components;
404 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
406 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
408 depth =
desc->comp[0].depth;
411 for (
int p = 0; p <
s->nb_planes; p++) {
412 if (depth == 8 &&
s->sigma[p] == INT16_MAX)
413 s->dsp.filter_row[p] =
s->algorithm ==
PARALLEL ? filter_row8 : filter_row8_serial;
414 else if (
s->sigma[p] == INT16_MAX)
415 s->dsp.filter_row[p] =
s->algorithm ==
PARALLEL ? filter_row16 : filter_row16_serial;
416 else if (depth == 8 &&
s->sigma[p] < INT16_MAX)
417 s->dsp.filter_row[p] =
s->algorithm ==
PARALLEL ? fweight_row8 : fweight_row8_serial;
418 else if (
s->sigma[p] < INT16_MAX)
419 s->dsp.filter_row[p] =
s->algorithm ==
PARALLEL ? fweight_row16 : fweight_row16_serial;
422 s->thra[0] =
s->fthra[0] * (1 << depth) - 1;
423 s->thra[1] =
s->fthra[1] * (1 << depth) - 1;
424 s->thra[2] =
s->fthra[2] * (1 << depth) - 1;
425 s->thrb[0] =
s->fthrb[0] * (1 << depth) - 1;
426 s->thrb[1] =
s->fthrb[1] * (1 << depth) - 1;
427 s->thrb[2] =
s->fthrb[2] * (1 << depth) - 1;
429 for (
int p = 0; p <
s->nb_planes; p++) {
430 float sigma =
s->radius *
s->sigma[p];
432 s->weights[p][
s->radius] = 1.f;
433 for (
int n = 1; n <=
s->radius; n++) {
434 s->weights[p][
s->radius + n] =
435 s->weights[p][
s->radius - n] =
expf(-0.5 * (n + 1) * (n + 1) / (sigma * sigma));
453 if (
s->q.available !=
s->size) {
454 if (
s->q.available <
s->mid) {
455 for (
i = 0;
i <
s->mid;
i++) {
464 if (
s->q.available <
s->size) {
473 if (!
ctx->is_disabled) {
482 for (
i = 0;
i <
s->size;
i++) {
485 s->data[0][
i] =
frame->data[0];
486 s->data[1][
i] =
frame->data[1];
487 s->data[2][
i] =
frame->data[2];
488 s->linesize[0][
i] =
frame->linesize[0];
489 s->linesize[1][
i] =
frame->linesize[1];
490 s->linesize[2][
i] =
frame->linesize[2];
576 .
name =
"atadenoise",
579 .priv_class = &atadenoise_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_YUVA422P16
#define FILTER_ROW(type, name)
#define AV_PIX_FMT_GBRAP16
#define AV_LOG_WARNING
Something somehow does not look correct.
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define WFILTER_ROW(type, name)
AVFilter ff_vf_atadenoise
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AVERROR_EOF
End of file.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_YUVA420P16
AVFILTER_DEFINE_CLASS(atadenoise)
#define AV_PIX_FMT_YUVA420P10
void ff_atadenoise_init_x86(ATADenoiseDSPContext *dsp, int depth, int algorithm, const float *sigma)
#define AV_PIX_FMT_YUV420P10
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
static int request_frame(AVFilterLink *outlink)
#define AV_PIX_FMT_YUVA422P10
static AVFrame * ff_bufqueue_get(struct FFBufQueue *queue)
Get the first buffer from the queue and remove it.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
static av_cold int init(AVFilterContext *ctx)
#define FILTER_ROW_SERIAL(type, name)
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_GBRP14
static const AVOption atadenoise_options[]
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_GRAY16
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_GRAY14
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define WFILTER_ROW_SERIAL(type, name)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GBRP16
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static void ff_bufqueue_discard_all(struct FFBufQueue *queue)
Unref and remove all buffers from the queue.
#define AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_YUV422P10
static av_cold void uninit(AVFilterContext *ctx)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV444P12
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
static void ff_bufqueue_add(void *log, struct FFBufQueue *queue, AVFrame *buf)
Add a buffer to the queue.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static AVFrame * ff_bufqueue_peek(struct FFBufQueue *queue, unsigned index)
Get a buffer from the queue without altering it.
Structure holding the queue.
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
static const int weights[]
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define AV_PIX_FMT_YUVA444P9
static int config_input(AVFilterLink *inlink)
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
int h
agreed upon image height
int(* filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int query_formats(AVFilterContext *ctx)
#define AV_PIX_FMT_YUVA422P12
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
static const struct @322 planes[]
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
static const AVFilterPad inputs[]
#define AV_PIX_FMT_GRAY12
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14
static const AVFilterPad outputs[]