22 #ifndef AVFILTER_WINDOW_FUNC_H 
   23 #define AVFILTER_WINDOW_FUNC_H 
   37 #define WIN_FUNC_OPTION(win_func_opt_name, win_func_offset, flag, default_window_func)                              \ 
   38     { win_func_opt_name, "set window function", win_func_offset, AV_OPT_TYPE_INT, {.i64 = default_window_func}, 0, NB_WFUNC-1, flag, "win_func" }, \ 
   39         { "rect",     "Rectangular",      0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT},     0, 0, flag, "win_func" }, \ 
   40         { "bartlett", "Bartlett",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, flag, "win_func" }, \ 
   41         { "hann",     "Hann",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, flag, "win_func" }, \ 
   42         { "hanning",  "Hanning",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING},  0, 0, flag, "win_func" }, \ 
   43         { "hamming",  "Hamming",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING},  0, 0, flag, "win_func" }, \ 
   44         { "blackman", "Blackman",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, flag, "win_func" }, \ 
   45         { "welch",    "Welch",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH},    0, 0, flag, "win_func" }, \ 
   46         { "flattop",  "Flat-top",         0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP},  0, 0, flag, "win_func" }, \ 
   47         { "bharris",  "Blackman-Harris",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS},  0, 0, flag, "win_func" }, \ 
   48         { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, flag, "win_func" }, \ 
   49         { "bhann",    "Bartlett-Hann",    0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN},    0, 0, flag, "win_func" }, \ 
   50         { "sine",     "Sine",             0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE},     0, 0, flag, "win_func" }, \ 
   51         { "nuttall",  "Nuttall",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL},  0, 0, flag, "win_func" }, \ 
   52         { "lanczos",  "Lanczos",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS},  0, 0, flag, "win_func" }, \ 
   53         { "gauss",    "Gauss",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS},    0, 0, flag, "win_func" }, \ 
   54         { "tukey",    "Tukey",            0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY},    0, 0, flag, "win_func" }, \ 
   55         { "dolph",    "Dolph-Chebyshev",  0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH},    0, 0, flag, "win_func" }, \ 
   56         { "cauchy",   "Cauchy",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY},   0, 0, flag, "win_func" }, \ 
   57         { "parzen",   "Parzen",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN},   0, 0, flag, "win_func" }, \ 
   58         { "poisson",  "Poisson",          0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON},  0, 0, flag, "win_func" }, \ 
   59         { "bohman",   "Bohman",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN},   0, 0, flag, "win_func" }, \ 
   60         { "kaiser",   "Kaiser",           0, AV_OPT_TYPE_CONST, {.i64=WFUNC_KAISER},   0, 0, flag, "win_func" } 
   70         for (n = 0; n < 
N; n++)
 
   75         for (n = 0; n < 
N; n++)
 
   76             lut[n] = 1.-
fabs((n-(
N-1)/2.)/((
N-1)/2.));
 
   80         for (n = 0; n < 
N; n++)
 
   81             lut[n] = .5*(1-cos(2*
M_PI*n/(
N-1)));
 
   85         for (n = 0; n < 
N; n++)
 
   86             lut[n] = .54-.46*cos(2*
M_PI*n/(
N-1));
 
   90         for (n = 0; n < 
N; n++)
 
   91             lut[n] = .42659-.49656*cos(2*
M_PI*n/(
N-1))+.076849*cos(4*
M_PI*n/(
N-1));
 
   95         for (n = 0; n < 
N; n++)
 
   96             lut[n] = 1.-(n-(
N-1)/2.)/((
N-1)/2.)*(n-(
N-1)/2.)/((
N-1)/2.);
 
  100         for (n = 0; n < 
N; n++)
 
  101             lut[n] = 1.-1.985844164102*cos( 2*
M_PI*n/(
N-1))+1.791176438506*cos( 4*
M_PI*n/(
N-1))-
 
  102             1.282075284005*cos( 6*
M_PI*n/(
N-1))+0.667777530266*cos( 8*
M_PI*n/(
N-1))-
 
  103             0.240160796576*cos(10*
M_PI*n/(
N-1))+0.056656381764*cos(12*
M_PI*n/(
N-1))-
 
  104             0.008134974479*cos(14*
M_PI*n/(
N-1))+0.000624544650*cos(16*
M_PI*n/(
N-1))-
 
  105             0.000019808998*cos(18*
M_PI*n/(
N-1))+0.000000132974*cos(20*
M_PI*n/(
N-1));
 
  109         for (n = 0; n < 
N; n++)
 
  110             lut[n] = 0.35875-0.48829*cos(2*
M_PI*n/(
N-1))+0.14128*cos(4*
M_PI*n/(
N-1))-0.01168*cos(6*
M_PI*n/(
N-1));
 
  114         for (n = 0; n < 
N; n++)
 
  115             lut[n] = 0.3635819-0.4891775*cos(2*
M_PI*n/(
N-1))+0.1365995*cos(4*
M_PI*n/(
N-1))-0.0106411*cos(6*
M_PI*n/(
N-1));
 
  119         for (n = 0; n < 
N; n++)
 
  120             lut[n] = 0.62-0.48*
fabs(n/(
double)(
N-1)-.5)-0.38*cos(2*
M_PI*n/(
N-1));
 
  124         for (n = 0; n < 
N; n++)
 
  125             lut[n] = sin(
M_PI*n/(
N-1));
 
  129         for (n = 0; n < 
N; n++)
 
  130             lut[n] = 0.355768-0.487396*cos(2*
M_PI*n/(
N-1))+0.144232*cos(4*
M_PI*n/(
N-1))-0.012604*cos(6*
M_PI*n/(
N-1));
 
  134         #define SINC(x) (!(x)) ? 1 : sin(M_PI * (x))/(M_PI * (x)); 
  135         for (n = 0; n < 
N; n++)
 
  136             lut[n] = 
SINC((2.*n)/(
N-1)-1);
 
  140         #define SQR(x) ((x)*(x)) 
  141         for (n = 0; n < 
N; n++)
 
  142             lut[n] = 
exp(-0.5 * 
SQR((n-(
N-1)/2)/(0.4*(
N-1)/2.
f)));
 
  146         for (n = 0; n < 
N; n++) {
 
  150                 lut[n] = 0.5 * (1 + cos((
M_PI*(
FFABS(n - 
M) - 0.3 * 
M))/((1 - 0.3) * 
M)));
 
  158         double b = cosh(7.6009022095419887 / (
N-1)), sum, t, 
c, norm = 0;
 
  160         for (
c = 1 - 1 / (
b*
b), n = (
N-1) / 2; n >= 0; --n) {
 
  161             for (sum = !n, 
b = t = j = 1; j <= n && sum != t; 
b *= (n-j) * (1./j), ++j)
 
  162                 t = sum, sum += (
b *= 
c * (
N - n - j) * (1./j));
 
  163             sum /= (
N - 1 - n), norm = norm ? norm : sum, sum /= norm;
 
  165             lut[
N - 1 - n] = sum;
 
  170         for (n = 0; n < 
N; n++) {
 
  171             double x = 2 * ((n / (
double)(
N - 1)) - .5);
 
  173             if (x <= -.5 || x >= .5) {
 
  182         for (n = 0; n < 
N; n++) {
 
  183             double x = 2 * ((n / (
double)(
N - 1)) - .5);
 
  185             if (x > 0.25 && x <= 0.5) {
 
  186                 lut[n] = -2 * 
powf(-1 + 2 * x, 3);
 
  187             } 
else if (x >= -.5 && x < -.25) {
 
  188                 lut[n] = 2 * 
powf(1 + 2 * x, 3);
 
  189             } 
else if (x >= -.25 && x < 0) {
 
  190                 lut[n] = 1 - 24 * x * x - 48 * x * x * x;
 
  191             } 
else if (x >= 0 && x <= .25) {
 
  192                 lut[n] = 1 - 24 * x * x + 48 * x * x * x;
 
  200         for (n = 0; n < 
N; n++) {
 
  201             double x = 2 * ((n / (
double)(
N - 1)) - .5);
 
  203             if (x >= 0 && x <= .5) {
 
  205             } 
else if (x < 0 && x >= -.5) {
 
  214         for (n = 0; n < 
N; n++) {
 
  215             double x = 2 * ((n / (
double)(
N - 1))) - 1.;
 
  224         for (n = 0; n < 
N; n++) {
 
  225             double x = 2.0 / (
double)(
N - 1);