Go to the documentation of this file.
26 #include <torch/torch.h>
27 #include <torch/script.h>
59 #define OFFSET(x) offsetof(THOptions, x)
60 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM
118 if (!model || !*model)
121 th_model = (
THModel *) (*model);
170 int ret, width_idx, height_idx, channel_idx;
191 input.dims[channel_idx] *
sizeof(
float));
195 infer_request->
output =
new torch::Tensor();
213 {1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]},
230 std::vector<torch::jit::IValue>
inputs;
231 torch::NoGradGuard no_grad;
243 if (
ctx->torch_option.optimize)
244 torch::jit::setGraphExecutorOptimize(
true);
246 torch::jit::setGraphExecutorOptimize(
false);
253 c10::Device device = (*th_model->
jit_model->parameters().begin()).device();
276 if (
sizes.size() == 4) {
292 if (
output->device() != torch::kCPU)
317 av_log(th_model->
ctx,
AV_LOG_ERROR,
"Unable to push back request_queue when failed to start inference.\n");
334 if (lltask ==
NULL) {
366 const char *output_name,
int *output_width,
int *output_height)
375 .output_names = &output_name,
424 const char *device_name =
ctx->device ?
ctx->device :
"cpu";
429 model = &th_model->
model;
432 c10::Device device = c10::Device(device_name);
433 if (device.is_xpu()) {
438 at::detail::getXPUHooks().initXPU();
439 }
else if (!device.is_cpu()) {
445 th_model->
jit_model =
new torch::jit::Module;
446 (*th_model->
jit_model) = torch::jit::load(
ctx->model_filename);
448 }
catch (
const c10::Error& e) {
LastLevelTaskItem * lltask
THInferRequest * infer_request
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
void * ff_safe_queue_pop_front(SafeQueue *sq)
Remove and free first element from the queue in SafeQueue.
static void deleter(void *arg)
Common Async Execution Mechanism for the DNN Backends.
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
void * ff_queue_pop_front(Queue *q)
Remove and free first element from the Queue.
int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func_type, DNNExecBaseParams *exec_params)
size_t ff_queue_size(Queue *q)
Return the length of the Queue.
#define DNN_GENERIC_ERROR
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
const DNNModule ff_dnn_backend_torch
This structure describes decoded (raw) audio or video data.
Double-ended queue with mutex locks ensuring data consistency while multithreading.
static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params)
FramePrePostProc frame_pre_proc
void(* callback)(void *args)
Completion Callback for the backend.
AVFilterContext * filter_ctx
Queue * ff_queue_create(void)
Create a Queue instance.
static int dnn_get_width_idx_by_layout(DNNLayout layout)
static FilteringContext * filter_ctx
Linear double-ended data structure.
int ff_queue_push_back(Queue *q, void *v)
Add data to the tail of the queue.
torch::jit::Module * jit_model
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void destroy_request_item(THRequestItem **arg)
static THInferRequest * th_create_inference_request(void)
void ff_queue_destroy(Queue *q)
Destroy the Queue instance.
int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx)
Allocate input and output frames and fill the Task with execution parameters.
int(* get_output)(struct DNNModel *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
static DNNModel * dnn_load_model_th(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx)
size_t ff_safe_queue_size(SafeQueue *sq)
Return the length of the SafeQueue.
int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
DNNAsyncExecModule exec_module
static const int sizes[][2]
static int get_input_th(DNNModel *model, DNNData *input, const char *input_name)
SafeQueue * ff_safe_queue_create(void)
Create and initialize a SafeQueue instance.
FramePrePostProc frame_post_proc
static int get_output_th(DNNModel *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
Join the Async Execution thread and set module pointers to NULL.
static void infer_completion_callback(void *args)
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
DNNFunctionType func_type
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
void ff_safe_queue_destroy(SafeQueue *sq)
Destroy the SafeQueue instance.
static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, AVFrame **in, AVFrame **out)
int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc)
Fill the Task for Backend Execution.
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define DNN_DEFINE_CLASS(fname)
int ff_safe_queue_push_back(SafeQueue *sq, void *v)
Add data to the tail of queue in the SafeQueue after locking mutex.
static int th_start_inference(void *args)
torch::Tensor * input_tensor
int(* start_inference)(void *request)
Synchronous inference function for the backend with corresponding request item as the argument.
void * args
Argument for the execution functions.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static const AVFilterPad outputs[]
static const AVOption dnn_th_options[]
static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
@ AV_OPT_TYPE_INT
Underlying C type is int.
DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVFrame **out)
Extract input and output frame from the Task Queue after asynchronous inference.
void * ff_queue_peek_front(Queue *q)
Return a pointer to the data at the head of the queue.
static int dnn_get_height_idx_by_layout(DNNLayout layout)
static int dnn_flush_th(const DNNModel *model)
static int dnn_get_channel_idx_by_layout(DNNLayout layout)
int(* get_input)(struct DNNModel *model, DNNData *input, const char *input_name)
static void dnn_free_model_th(DNNModel **model)
static int fill_model_input_th(THModel *th_model, THRequestItem *request)
SafeQueue * request_queue
int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
static void th_free_request(THInferRequest *request)