Go to the documentation of this file.
151 #define FULLPEL_MODE 1
152 #define HALFPEL_MODE 2
153 #define THIRDPEL_MODE 3
154 #define PREDICT_MODE 4
166 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
167 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
168 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
169 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
173 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
174 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
175 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
176 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
182 { 0, 2 }, { 1, 1 }, { 2, 0 },
183 { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
184 { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
185 { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
186 { 2, 4 }, { 3, 3 }, { 4, 2 },
192 { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
193 { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
194 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
195 { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
196 { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
197 { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
198 { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
199 { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
200 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
201 { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
202 { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
203 { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
206 static const struct {
210 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
211 { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
212 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
213 { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
217 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
218 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
219 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
220 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
231 for (
i = 0;
i < 4;
i++) {
232 const int z0 = 13 * (
input[4 *
i + 0] +
input[4 *
i + 2]);
233 const int z1 = 13 * (
input[4 *
i + 0] -
input[4 *
i + 2]);
234 const int z2 = 7 *
input[4 *
i + 1] - 17 *
input[4 *
i + 3];
235 const int z3 = 17 *
input[4 *
i + 1] + 7 *
input[4 *
i + 3];
237 temp[4 *
i + 0] = z0 + z3;
238 temp[4 *
i + 1] = z1 + z2;
239 temp[4 *
i + 2] = z1 - z2;
240 temp[4 *
i + 3] = z0 - z3;
243 for (
i = 0;
i < 4;
i++) {
244 const int offset = x_offset[
i];
245 const int z0 = 13 * (
temp[4 * 0 +
i] +
temp[4 * 2 +
i]);
246 const int z1 = 13 * (
temp[4 * 0 +
i] -
temp[4 * 2 +
i]);
247 const int z2 = 7 *
temp[4 * 1 +
i] - 17 *
temp[4 * 3 +
i];
248 const int z3 = 17 *
temp[4 * 1 +
i] + 7 *
temp[4 * 3 +
i];
266 : qmul * (
block[0] >> 3) / 2);
270 for (
i = 0;
i < 4;
i++) {
271 const int z0 = 13 * (
block[0 + 4 *
i] +
block[2 + 4 *
i]);
272 const int z1 = 13 * (
block[0 + 4 *
i] -
block[2 + 4 *
i]);
273 const int z2 = 7 *
block[1 + 4 *
i] - 17 *
block[3 + 4 *
i];
274 const int z3 = 17 *
block[1 + 4 *
i] + 7 *
block[3 + 4 *
i];
276 block[0 + 4 *
i] = z0 + z3;
277 block[1 + 4 *
i] = z1 + z2;
278 block[2 + 4 *
i] = z1 - z2;
279 block[3 + 4 *
i] = z0 - z3;
282 for (
i = 0;
i < 4;
i++) {
283 const unsigned z0 = 13 * (
block[
i + 4 * 0] +
block[
i + 4 * 2]);
284 const unsigned z1 = 13 * (
block[
i + 4 * 0] -
block[
i + 4 * 2]);
285 const unsigned z2 = 7 *
block[
i + 4 * 1] - 17 *
block[
i + 4 * 3];
286 const unsigned z3 = 17 *
block[
i + 4 * 1] + 7 *
block[
i + 4 * 3];
287 const int rr = (
dc + 0x80000
u);
295 memset(
block, 0, 16 *
sizeof(int16_t));
301 static const uint8_t *
const scan_patterns[4] = {
307 const int intra = 3 *
type >> 2;
308 const uint8_t *
const scan = scan_patterns[
type];
315 sign = (vlc & 1) ? 0 : -1;
322 }
else if (vlc < 4) {
335 level = (vlc >> 3) + ((
run == 0) ? 8 : ((
run < 2) ? 2 : ((
run < 5) ? 0 : -1)));
338 level = (vlc >> 4) + ((
run == 0) ? 4 : ((
run < 3) ? 2 : ((
run < 10) ? 1 : 0)));
359 int i,
int list,
int part_width)
361 const int topright_ref =
s->ref_cache[
list][
i - 8 + part_width];
364 *
C =
s->mv_cache[
list][
i - 8 + part_width];
367 *
C =
s->mv_cache[
list][
i - 8 - 1];
368 return s->ref_cache[
list][
i - 8 - 1];
380 int part_width,
int list,
381 int ref,
int *
const mx,
int *
const my)
383 const int index8 =
scan8[n];
384 const int top_ref =
s->ref_cache[
list][index8 - 8];
385 const int left_ref =
s->ref_cache[
list][index8 - 1];
386 const int16_t *
const A =
s->mv_cache[
list][index8 - 1];
387 const int16_t *
const B =
s->mv_cache[
list][index8 - 8];
389 int diagonal_ref, match_count;
400 match_count = (diagonal_ref ==
ref) + (top_ref ==
ref) + (left_ref ==
ref);
401 if (match_count > 1) {
404 }
else if (match_count == 1) {
405 if (left_ref ==
ref) {
408 }
else if (top_ref ==
ref) {
430 int mx,
int my,
int dxy,
431 int thirdpel,
int dir,
int avg)
433 const SVQ3Frame *pic = (dir == 0) ?
s->last_pic :
s->next_pic;
436 int blocksize = 2 - (
width >> 3);
437 int linesize =
s->cur_pic->f->linesize[0];
438 int uvlinesize =
s->cur_pic->f->linesize[1];
443 if (mx < 0 || mx >=
s->h_edge_pos -
width - 1 ||
444 my < 0 || my >=
s->v_edge_pos -
height - 1) {
451 dest =
s->cur_pic->f->data[0] + x + y * linesize;
455 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
458 mx,
my,
s->h_edge_pos,
s->v_edge_pos);
459 src =
s->edge_emu_buffer;
462 (
avg ?
s->tdsp.avg_tpel_pixels_tab
463 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src, linesize,
466 (
avg ?
s->hdsp.avg_pixels_tab
467 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src, linesize,
471 mx =
mx + (
mx < (int) x) >> 1;
472 my =
my + (
my < (int) y) >> 1;
477 for (
i = 1;
i < 3;
i++) {
478 dest =
s->cur_pic->f->data[
i] + (x >> 1) + (y >> 1) * uvlinesize;
482 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
483 uvlinesize, uvlinesize,
485 mx,
my, (
s->h_edge_pos >> 1),
487 src =
s->edge_emu_buffer;
490 (
avg ?
s->tdsp.avg_tpel_pixels_tab
491 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src,
495 (
avg ?
s->hdsp.avg_pixels_tab
496 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src,
506 int i, j, k,
mx,
my, dx, dy, x, y;
507 const int part_width = ((
size & 5) == 4) ? 4 : 16 >> (
size & 1);
508 const int part_height = 16 >> ((unsigned)(
size + 1) / 3);
510 const int h_edge_pos = 6 * (
s->h_edge_pos - part_width) - extra_width;
511 const int v_edge_pos = 6 * (
s->v_edge_pos - part_height) - extra_width;
513 for (
i = 0;
i < 16;
i += part_height)
514 for (j = 0; j < 16; j += part_width) {
515 const int b_xy = (4 *
s->mb_x + (j >> 2)) +
516 (4 *
s->mb_y + (
i >> 2)) *
s->b_stride;
518 x = 16 *
s->mb_x + j;
519 y = 16 *
s->mb_y +
i;
520 k = (j >> 2 & 1) + (
i >> 1 & 2) +
521 (j >> 1 & 4) + (
i & 8);
526 mx =
s->next_pic->motion_val[0][b_xy][0] * 2;
527 my =
s->next_pic->motion_val[0][b_xy][1] * 2;
530 mx =
mx *
s->frame_num_offset /
531 s->prev_frame_num_offset + 1 >> 1;
532 my =
my *
s->frame_num_offset /
533 s->prev_frame_num_offset + 1 >> 1;
535 mx =
mx * (
s->frame_num_offset -
s->prev_frame_num_offset) /
536 s->prev_frame_num_offset + 1 >> 1;
537 my =
my * (
s->frame_num_offset -
s->prev_frame_num_offset) /
538 s->prev_frame_num_offset + 1 >> 1;
543 mx =
av_clip(
mx, extra_width - 6 * x, h_edge_pos - 6 * x);
544 my =
av_clip(
my, extra_width - 6 * y, v_edge_pos - 6 * y);
553 if (dx != (int16_t)dx || dy != (int16_t)dy) {
562 mx = (
mx + 1 >> 1) + dx;
563 my = (
my + 1 >> 1) + dy;
564 fx = (unsigned)(
mx + 0x30000) / 3 - 0x10000;
565 fy = (unsigned)(
my + 0x30000) / 3 - 0x10000;
566 dxy = (
mx - 3 * fx) + 4 * (
my - 3 * fy);
569 fx, fy, dxy, 1, dir,
avg);
573 mx = (unsigned)(
mx + 1 + 0x30000) / 3 + dx - 0x10000;
574 my = (unsigned)(
my + 1 + 0x30000) / 3 + dy - 0x10000;
575 dxy = (
mx & 1) + 2 * (
my & 1);
578 mx >> 1,
my >> 1, dxy, 0, dir,
avg);
582 mx = (unsigned)(
mx + 3 + 0x60000) / 6 + dx - 0x10000;
583 my = (unsigned)(
my + 3 + 0x60000) / 6 + dy - 0x10000;
595 if (part_height == 8 &&
i < 8) {
598 if (part_width == 8 && j < 8)
601 if (part_width == 8 && j < 8)
603 if (part_width == 4 || part_height == 4)
609 part_width >> 2, part_height >> 2,
s->b_stride,
617 int mb_type,
const int *block_offset,
618 int linesize, uint8_t *dest_y)
622 for (
i = 0;
i < 16;
i++)
623 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
624 uint8_t *
const ptr = dest_y + block_offset[
i];
633 const int *block_offset,
638 int qscale =
s->qscale;
641 for (
i = 0;
i < 16;
i++) {
642 uint8_t *
const ptr = dest_y + block_offset[
i];
643 const int dir =
s->intra4x4_pred_mode_cache[
scan8[
i]];
649 topright = ptr + 4 - linesize;
653 s->hpc.pred4x4[dir](ptr, topright, linesize);
654 nnz =
s->non_zero_count_cache[
scan8[
i]];
660 s->hpc.pred16x16[
s->intra16x16_pred_mode](dest_y, linesize);
667 const int mb_x =
s->mb_x;
668 const int mb_y =
s->mb_y;
669 const int mb_xy =
s->mb_xy;
670 const int mb_type =
s->cur_pic->mb_type[mb_xy];
671 uint8_t *dest_y, *dest_cb, *dest_cr;
672 int linesize, uvlinesize;
674 const int *block_offset = &
s->block_offset[0];
675 const int block_h = 16 >> 1;
677 linesize =
s->cur_pic->f->linesize[0];
678 uvlinesize =
s->cur_pic->f->linesize[1];
680 dest_y =
s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
681 dest_cb =
s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
682 dest_cr =
s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
684 s->vdsp.prefetch(dest_y + (
s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
685 s->vdsp.prefetch(dest_cb + (
s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
688 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cb, uvlinesize);
689 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cr, uvlinesize);
697 uint8_t *dest[2] = { dest_cb, dest_cr };
698 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 1,
699 s->dequant4_coeff[4][0]);
700 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 2,
701 s->dequant4_coeff[4][0]);
702 for (j = 1; j < 3; j++) {
703 for (
i = j * 16;
i < j * 16 + 4;
i++)
704 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
705 uint8_t *
const ptr = dest[j - 1] + block_offset[
i];
715 int i, j, k, m, dir,
mode;
719 const int mb_xy =
s->mb_xy;
720 const int b_xy = 4 *
s->mb_x + 4 *
s->mb_y *
s->b_stride;
722 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
723 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
727 s->next_pic->mb_type[mb_xy] == -1) {
737 mb_type =
FFMIN(
s->next_pic->mb_type[mb_xy], 6);
745 }
else if (mb_type < 8) {
746 if (
s->thirdpel_flag &&
s->halfpel_flag == !
get_bits1(&
s->gb_slice))
748 else if (
s->halfpel_flag &&
763 for (m = 0; m < 2; m++) {
764 if (
s->mb_x > 0 &&
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6] != -1) {
765 for (
i = 0;
i < 4;
i++)
767 s->cur_pic->motion_val[m][b_xy - 1 +
i *
s->b_stride]);
769 for (
i = 0;
i < 4;
i++)
773 memcpy(
s->mv_cache[m][
scan8[0] - 1 * 8],
774 s->cur_pic->motion_val[m][b_xy -
s->b_stride],
775 4 * 2 *
sizeof(int16_t));
776 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8],
779 if (
s->mb_x <
s->mb_width - 1) {
781 s->cur_pic->motion_val[m][b_xy -
s->b_stride + 4]);
782 s->ref_cache[m][
scan8[0] + 4 - 1 * 8] =
783 (
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride + 1] + 6] == -1 ||
789 s->cur_pic->motion_val[m][b_xy -
s->b_stride - 1]);
790 s->ref_cache[m][
scan8[0] - 1 - 1 * 8] =
795 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8 - 1],
811 for (
i = 0;
i < 4;
i++)
812 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
813 0, 4 * 2 *
sizeof(int16_t));
819 for (
i = 0;
i < 4;
i++)
820 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
821 0, 4 * 2 *
sizeof(int16_t));
826 }
else if (mb_type == 8 || mb_type == 33) {
827 int8_t *i4x4 =
s->intra4x4_pred_mode +
s->mb2br_xy[
s->mb_xy];
828 int8_t *i4x4_cache =
s->intra4x4_pred_mode_cache;
830 memset(
s->intra4x4_pred_mode_cache, -1, 8 * 5 *
sizeof(int8_t));
834 for (
i = 0;
i < 4;
i++)
835 s->intra4x4_pred_mode_cache[
scan8[0] - 1 +
i * 8] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6 -
i];
836 if (
s->intra4x4_pred_mode_cache[
scan8[0] - 1] == -1)
837 s->left_samples_available = 0x5F5F;
840 s->intra4x4_pred_mode_cache[4 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 0];
841 s->intra4x4_pred_mode_cache[5 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 1];
842 s->intra4x4_pred_mode_cache[6 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 2];
843 s->intra4x4_pred_mode_cache[7 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 3];
845 if (
s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
846 s->top_samples_available = 0x33FF;
850 for (
i = 0;
i < 16;
i += 2) {
855 "luma prediction:%"PRIu32
"\n", vlc);
860 top = &
s->intra4x4_pred_mode_cache[
scan8[
i] - 8];
865 if (
left[1] == -1 ||
left[2] == -1) {
871 for (
i = 0;
i < 4;
i++)
872 memset(&
s->intra4x4_pred_mode_cache[
scan8[0] + 8 *
i],
DC_PRED, 4);
876 i4x4[4] = i4x4_cache[7 + 8 * 3];
877 i4x4[5] = i4x4_cache[7 + 8 * 2];
878 i4x4[6] = i4x4_cache[7 + 8 * 1];
882 s->avctx,
s->top_samples_available,
883 s->left_samples_available);
885 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
886 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
888 for (
i = 0;
i < 4;
i++)
891 s->top_samples_available = 0x33FF;
892 s->left_samples_available = 0x5F5F;
898 dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
901 s->left_samples_available, dir, 0)) < 0) {
903 return s->intra16x16_pred_mode;
911 for (
i = 0;
i < 4;
i++)
912 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
913 0, 4 * 2 *
sizeof(int16_t));
915 for (
i = 0;
i < 4;
i++)
916 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
917 0, 4 * 2 *
sizeof(int16_t));
921 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy],
DC_PRED, 8);
924 memset(
s->non_zero_count_cache + 8, 0, 14 * 8 *
sizeof(uint8_t));
941 if (
s->qscale > 31
u) {
951 "error while decoding intra luma dc\n");
960 for (
i = 0;
i < 4;
i++)
961 if ((cbp & (1 <<
i))) {
962 for (j = 0; j < 4; j++) {
963 k =
index ? (1 * (j & 1) + 2 * (
i & 1) +
964 2 * (j & 2) + 4 * (
i & 2))
966 s->non_zero_count_cache[
scan8[k]] = 1;
970 "error while decoding block\n");
977 for (
i = 1;
i < 3; ++
i)
980 "error while decoding chroma dc block\n");
985 for (
i = 1;
i < 3;
i++) {
986 for (j = 0; j < 4; j++) {
988 s->non_zero_count_cache[
scan8[k]] = 1;
992 "error while decoding chroma ac block\n");
1002 s->cur_pic->mb_type[mb_xy] = mb_type;
1014 const int mb_xy =
s->mb_xy;
1025 int slice_bits, slice_bytes, slice_length;
1026 int length =
header >> 5 & 3;
1028 slice_length =
show_bits(&
s->gb, 8 * length);
1029 slice_bits = slice_length * 8;
1030 slice_bytes = slice_length + length - 1;
1042 memcpy(
s->slice_buf,
s->gb.buffer +
s->gb.index / 8, slice_bytes);
1045 memmove(
s->slice_buf, &
s->slice_buf[slice_length], length - 1);
1048 if (
s->watermark_key) {
1064 if ((
header & 0x9F) == 2) {
1065 i = (
s->mb_num < 64) ? 6 : (1 +
av_log2(
s->mb_num - 1));
1079 if (
s->has_watermark)
1090 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy - 1] + 3,
1091 -1, 4 *
sizeof(int8_t));
1092 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_x],
1093 -1, 8 *
sizeof(int8_t) *
s->mb_x);
1096 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_stride],
1097 -1, 8 *
sizeof(int8_t) * (
s->mb_width -
s->mb_x));
1100 s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride - 1] + 3] = -1;
1109 const int max_qp = 51;
1111 for (q = 0; q < max_qp + 1; q++) {
1114 for (x = 0; x < 16; x++)
1115 s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
1123 const uint8_t *extradata = avctx->
extradata + seqh_offset;
1134 int frame_size_code =
get_bits(&gb, 3);
1136 switch (frame_size_code) {
1190 unk0, unk1, unk2, unk3, unk4);
1197 if (!
s->has_watermark)
1207 unsigned long buf_len = watermark_width *
1208 watermark_height * 4;
1211 if (watermark_height <= 0 ||
1213 (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
1217 watermark_width, watermark_height);
1219 "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
1226 if (uncompress(buf, &buf_len, extradata +
offset,
1229 "could not uncompress watermark logo\n");
1235 s->watermark_key =
s->watermark_key << 16 |
s->watermark_key;
1237 "watermark key %#"PRIx32
"\n",
s->watermark_key);
1243 "this svq3 file contains watermark which need zlib support compiled in\n");
1252 unsigned char *extradata;
1255 s->cur_pic = &
s->frames[0];
1256 s->last_pic = &
s->frames[1];
1257 s->next_pic = &
s->frames[2];
1262 if (!
s->cur_pic->f || !
s->last_pic->f || !
s->next_pic->f)
1279 s->halfpel_flag = 1;
1280 s->thirdpel_flag = 1;
1281 s->has_watermark = 0;
1284 extradata = (
unsigned char *)avctx->
extradata;
1287 if (!memcmp(extradata,
"SEQH", 4)) {
1298 s->mb_width = (avctx->
width + 15) / 16;
1299 s->mb_height = (avctx->
height + 15) / 16;
1300 s->mb_stride =
s->mb_width + 1;
1301 s->mb_num =
s->mb_width *
s->mb_height;
1302 s->b_stride = 4 *
s->mb_width;
1303 s->h_edge_pos =
s->mb_width * 16;
1304 s->v_edge_pos =
s->mb_height * 16;
1306 const unsigned big_mb_num =
s->mb_stride * (
s->mb_height + 2) + 1;
1309 if (!
s->mb_type_buf)
1311 uint32_t *mb_type_buf =
s->mb_type_buf + 2 *
s->mb_stride + 1;
1313 const unsigned b4_stride =
s->mb_width * 4 + 1;
1314 const unsigned b4_array_size = b4_stride *
s->mb_height * 4;
1315 const unsigned motion_val_buf_size = b4_array_size + 4;
1317 s->motion_val_buf =
av_calloc(motion_val_buf_size,
1318 NUM_PICS * 2 *
sizeof(*
s->motion_val_buf));
1319 if (!
s->motion_val_buf)
1321 int16_t (*motion_val_buf)[2] =
s->motion_val_buf + 4;
1327 mb_type_buf += big_mb_num;
1330 motion_val_buf += motion_val_buf_size;
1334 s->intra4x4_pred_mode =
av_mallocz(
s->mb_stride * 2 * 8);
1335 if (!
s->intra4x4_pred_mode)
1338 s->mb2br_xy =
av_mallocz(
s->mb_stride * (
s->mb_height + 1) *
1339 sizeof(*
s->mb2br_xy));
1343 for (y = 0; y <
s->mb_height; y++)
1344 for (x = 0; x <
s->mb_width; x++) {
1345 const int mb_xy = x + y *
s->mb_stride;
1347 s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 *
s->mb_stride));
1364 if (!
s->edge_emu_buffer) {
1366 if (!
s->edge_emu_buffer)
1382 memset(pic->
f->
data[1], 0x80, (avctx->
height / 2) *
1384 memset(pic->
f->
data[2], 0x80, (avctx->
height / 2) *
1394 int buf_size = avpkt->
size;
1399 if (buf_size == 0) {
1400 if (
s->next_pic->f->data[0] && !
s->low_delay) {
1407 s->mb_x =
s->mb_y =
s->mb_xy = 0;
1417 if (avpkt->
size <
s->mb_width *
s->mb_height / 8)
1420 s->pict_type =
s->slice_type;
1428 s->cur_pic->f->pict_type =
s->pict_type;
1438 for (
i = 0;
i < 16;
i++) {
1440 s->block_offset[48 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[0] * ((
scan8[
i] -
scan8[0]) >> 3);
1442 for (
i = 0;
i < 16;
i++) {
1443 s->block_offset[16 +
i] =
1444 s->block_offset[32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 4 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1445 s->block_offset[48 + 16 +
i] =
1446 s->block_offset[48 + 32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1450 if (!
s->last_pic->f->data[0]) {
1465 "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
1467 s->halfpel_flag,
s->thirdpel_flag,
1468 s->adaptive_quant,
s->qscale,
s->slice_num);
1476 s->frame_num_offset =
s->slice_num -
s->prev_frame_num;
1478 if (
s->frame_num_offset < 0)
1479 s->frame_num_offset += 256;
1480 if (
s->frame_num_offset == 0 ||
1481 s->frame_num_offset >=
s->prev_frame_num_offset) {
1486 s->prev_frame_num =
s->frame_num;
1487 s->frame_num =
s->slice_num;
1488 s->prev_frame_num_offset =
s->frame_num -
s->prev_frame_num;
1490 if (
s->prev_frame_num_offset < 0)
1491 s->prev_frame_num_offset += 256;
1494 for (m = 0; m < 2; m++) {
1496 for (
i = 0;
i < 4;
i++) {
1498 for (j = -1; j < 4; j++)
1499 s->ref_cache[m][
scan8[0] + 8 *
i + j] = 1;
1505 for (
s->mb_y = 0;
s->mb_y <
s->mb_height;
s->mb_y++) {
1506 for (
s->mb_x = 0;
s->mb_x <
s->mb_width;
s->mb_x++) {
1508 s->mb_xy =
s->mb_x +
s->mb_y *
s->mb_stride;
1518 if (
s->slice_type !=
s->pict_type) {
1532 "error while decoding MB %d %d\n",
s->mb_x,
s->mb_y);
1536 if (mb_type != 0 ||
s->cbp)
1540 s->cur_pic->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride] =
1545 s->last_pic->f->data[0] ?
s->last_pic->f :
NULL,
1552 if (
s->mb_y !=
s->mb_height ||
s->mb_x !=
s->mb_width) {
1564 else if (
s->last_pic->f->data[0])
1570 if (
s->last_pic->f->data[0] ||
s->low_delay)
1600 CODEC_LONG_NAME(
"Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
uint8_t * edge_emu_buffer
void ff_draw_horiz_band(AVCodecContext *avctx, const AVFrame *cur, const AVFrame *last, int y, int h, int picture_structure, int first_field, int low_delay)
Draw a horizontal band if supported.
static const uint32_t svq3_dequant_coeff[32]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
enum AVPictureType slice_type
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int svq3_decode_slice_header(AVCodecContext *avctx)
SVQ3Frame frames[NUM_PICS]
const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM+1]
static const int8_t mv[256][2]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
unsigned int left_samples_available
static int get_bits_count(const GetBitContext *s)
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
const uint8_t ff_h264_golomb_to_inter_cbp[48]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
Full range content.
static const struct @248 svq3_dct_tables[2][16]
const uint8_t ff_h264_golomb_to_intra4x4_cbp[48]
#define MB_TYPE_INTRA16x16
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
static void skip_bits(GetBitContext *s, int n)
static av_cold void close(AVCodecParserContext *s)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t mx
AVCodec p
The public AVCodec.
#define u(width, name, range_min, range_max)
enum AVDiscard skip_frame
Skip decoding for selected frames.
int flags
AV_CODEC_FLAG_*.
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static const uint8_t scan8[16 *3+3]
const uint8_t ff_h264_golomb_to_pict_type[5]
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
static av_cold int alloc_dummy_frame(AVCodecContext *avctx, SVQ3Frame *pic)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int8_t intra4x4_pred_mode_cache[5 *8]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
int has_b_frames
Size of the frame reordering buffer in the decoder.
#define FF_CODEC_DECODE_CB(func)
enum AVPictureType pict_type
static int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
av_cold void ff_tpeldsp_init(TpelDSPContext *c)
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my)
Get the predicted MV.
unsigned int top_samples_available
int prev_frame_num_offset
#define CODEC_LONG_NAME(str)
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t my
int16_t(*[2] motion_val)[2]
@ AVDISCARD_ALL
discard all
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
const uint8_t ff_h264_chroma_dc_scan[4]
int16_t mb_luma_dc[3][16 *2]
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
Context for storing H.264 DSP functions.
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
static void init_dequant4_coeff_table(SVQ3Context *s)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static void hl_decode_mb(SVQ3Context *s)
static int get_interleaved_se_golomb(GetBitContext *gb)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const uint8_t header[24]
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
#define AVERROR_EXTERNAL
Generic error in an external library.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const uint8_t ff_h264_quant_rem6[QP_MAX_NUM+1]
static void skip_bits1(GetBitContext *s)
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define AV_LOG_INFO
Standard information.
static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
#define i(width, name, range_min, range_max)
uint8_t * extradata
Out-of-band global headers that may be used by some codecs.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
int16_t mv_cache[2][5 *8][2]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
static int svq3_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, AVPacket *avpkt)
static av_cold int svq3_decode_extradata(AVCodecContext *avctx, SVQ3Context *s, int seqh_offset)
uint8_t non_zero_count_cache[15 *8]
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
static const uint8_t svq3_scan[16]
static double limit(double x)
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
int64_t frame_num
Frame counter, set by libavcodec.
static const int8_t svq3_pred_1[6][6][5]
#define FFSWAP(type, a, b)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static int skip_1stop_8data_bits(GetBitContext *gb)
main external API structure.
const uint8_t ff_h264_dequant4_coeff_init[6][3]
int block_offset[2 *(16 *3)]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
int16_t(* motion_val_buf)[2]
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
int ff_h264_check_intra4x4_pred_mode(int8_t *pred_mode_cache, void *logctx, int top_samples_available, int left_samples_available)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...
const IMbInfo ff_h264_i_mb_type_info[26]
static void fill_rectangle(int x, int y, int w, int h)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static const uint8_t luma_dc_zigzag_scan[16]
#define PART_NOT_AVAILABLE
const uint8_t ff_h264_quant_div6[QP_MAX_NUM+1]
Context for storing H.264 prediction functions.
static void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg)
@ AV_PICTURE_TYPE_P
Predicted.
static av_cold int svq3_decode_end(AVCodecContext *avctx)
#define avpriv_request_sample(...)
uint32_t dequant4_coeff[QP_MAX_NUM+1][16]
int8_t ref_cache[2][5 *8]
This structure stores compressed data.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int svq3_decode_init(AVCodecContext *avctx)
@ AVDISCARD_NONREF
discard all non reference
const FFCodec ff_svq3_decoder
int8_t * intra4x4_pred_mode
static const uint8_t svq3_pred_0[25][2]
int ff_h264_check_intra_pred_mode(void *logctx, int top_samples_available, int left_samples_available, int mode, int is_chroma)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...