Go to the documentation of this file.
32 #define MIN_FILTER_SIZE 3
33 #define MAX_FILTER_SIZE 301
35 #define FF_BUFQUEUE_SIZE (MAX_FILTER_SIZE + 1)
89 #define OFFSET(x) offsetof(DynamicAudioNormalizerContext, x)
90 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
122 if (!(
s->filter_size & 1)) {
253 for (
int i = 0;
i < side;
i++)
257 int count = (q->
size - new_size + 1) / 2;
268 double total_weight = 0.0;
269 const double sigma = (((
s->filter_size / 2.0) - 1.0) / 3.0) + (1.0 / 3.0);
274 const int offset =
s->filter_size / 2;
275 const double c1 = 1.0 / (sigma * sqrt(2.0 *
M_PI));
276 const double c2 = 2.0 * sigma * sigma;
279 for (
i = 0;
i <
s->filter_size;
i++) {
283 total_weight +=
s->weights[
i];
287 adjust = 1.0 / total_weight;
288 for (
i = 0;
i <
s->filter_size;
i++) {
302 for (
c = 0;
c <
s->channels;
c++) {
303 if (
s->gain_history_original)
305 if (
s->gain_history_minimum)
307 if (
s->gain_history_smoothed)
309 if (
s->threshold_history)
319 s->is_enabled =
NULL;
334 s->channels =
inlink->channels;
339 s->dc_correction_value =
av_calloc(
inlink->channels,
sizeof(*
s->dc_correction_value));
340 s->compress_threshold =
av_calloc(
inlink->channels,
sizeof(*
s->compress_threshold));
341 s->gain_history_original =
av_calloc(
inlink->channels,
sizeof(*
s->gain_history_original));
342 s->gain_history_minimum =
av_calloc(
inlink->channels,
sizeof(*
s->gain_history_minimum));
343 s->gain_history_smoothed =
av_calloc(
inlink->channels,
sizeof(*
s->gain_history_smoothed));
344 s->threshold_history =
av_calloc(
inlink->channels,
sizeof(*
s->threshold_history));
347 if (!
s->prev_amplification_factor || !
s->dc_correction_value ||
348 !
s->compress_threshold ||
349 !
s->gain_history_original || !
s->gain_history_minimum ||
350 !
s->gain_history_smoothed || !
s->threshold_history ||
351 !
s->is_enabled || !
s->weights)
355 s->prev_amplification_factor[
c] = 1.0;
362 if (!
s->gain_history_original[
c] || !
s->gain_history_minimum[
c] ||
363 !
s->gain_history_smoothed[
c] || !
s->threshold_history[
c])
372 static inline double fade(
double prev,
double next,
int pos,
int length)
374 const double step_size = 1.0 / length;
375 const double f0 = 1.0 - (step_size * (
pos + 1.0));
376 const double f1 = 1.0 - f0;
377 return f0 * prev + f1 * next;
385 static inline double bound(
const double threshold,
const double val)
387 const double CONST = 0.8862269254527580136490837416705725913987747280611935;
393 double max = DBL_EPSILON;
397 for (
c = 0;
c <
frame->channels;
c++) {
398 double *data_ptr = (
double *)
frame->extended_data[
c];
404 double *data_ptr = (
double *)
frame->extended_data[
channel];
415 double rms_value = 0.0;
419 for (
c = 0;
c <
frame->channels;
c++) {
420 const double *data_ptr = (
double *)
frame->extended_data[
c];
423 rms_value +=
pow_2(data_ptr[
i]);
427 rms_value /=
frame->nb_samples *
frame->channels;
429 const double *data_ptr = (
double *)
frame->extended_data[
channel];
431 rms_value +=
pow_2(data_ptr[
i]);
434 rms_value /=
frame->nb_samples;
437 return FFMAX(sqrt(rms_value), DBL_EPSILON);
444 const double maximum_gain =
s->peak_value / peak_magnitude;
448 gain.
threshold = peak_magnitude >
s->threshold;
449 gain.max_gain =
bound(
s->max_amplification,
FFMIN(maximum_gain, rms_gain));
456 double min = DBL_MAX;
468 double result = 0.0, tsum = 0.0;
486 const int pre_fill_size =
s->filter_size / 2;
487 const double initial_value =
s->alt_boundary_mode ? gain.
max_gain :
s->peak_value;
489 s->prev_amplification_factor[
channel] = initial_value;
503 const int pre_fill_size =
s->filter_size / 2;
504 double initial_value =
s->alt_boundary_mode ?
cqueue_peek(
s->gain_history_original[
channel], 0) : 1.0;
505 int input = pre_fill_size;
524 double smoothed, limit;
528 smoothed =
FFMIN(smoothed, limit);
537 static inline double update_value(
double new,
double old,
double aggressiveness)
539 av_assert0((aggressiveness >= 0.0) && (aggressiveness <= 1.0));
540 return aggressiveness *
new + (1.0 - aggressiveness) * old;
545 const double diff = 1.0 /
frame->nb_samples;
546 int is_first_frame =
cqueue_empty(
s->gain_history_original[0]);
549 for (
c = 0;
c <
s->channels;
c++) {
550 double *dst_ptr = (
double *)
frame->extended_data[
c];
551 double current_average_value = 0.0;
555 current_average_value += dst_ptr[
i] *
diff;
557 prev_value = is_first_frame ? current_average_value :
s->dc_correction_value[
c];
558 s->dc_correction_value[
c] = is_first_frame ? current_average_value :
update_value(current_average_value,
s->dc_correction_value[
c], 0.1);
560 for (
i = 0;
i <
frame->nb_samples;
i++) {
561 dst_ptr[
i] -=
fade(prev_value,
s->dc_correction_value[
c],
i,
frame->nb_samples);
568 if ((threshold > DBL_EPSILON) && (threshold < (1.0 - DBL_EPSILON))) {
569 double current_threshold = threshold;
570 double step_size = 1.0;
572 while (step_size > DBL_EPSILON) {
573 while ((
llrint((current_threshold + step_size) * (UINT64_C(1) << 63)) >
574 llrint(current_threshold * (UINT64_C(1) << 63))) &&
575 (
bound(current_threshold + step_size, 1.0) <= threshold)) {
576 current_threshold += step_size;
582 return current_threshold;
591 double variance = 0.0;
595 for (
c = 0;
c <
s->channels;
c++) {
596 const double *data_ptr = (
double *)
frame->extended_data[
c];
599 variance +=
pow_2(data_ptr[
i]);
602 variance /= (
s->channels *
frame->nb_samples) - 1;
604 const double *data_ptr = (
double *)
frame->extended_data[
channel];
607 variance +=
pow_2(data_ptr[
i]);
609 variance /=
frame->nb_samples - 1;
612 return FFMAX(sqrt(variance), DBL_EPSILON);
617 int is_first_frame =
cqueue_empty(
s->gain_history_original[0]);
620 if (
s->channels_coupled) {
622 const double current_threshold =
FFMIN(1.0,
s->compress_factor * standard_deviation);
624 const double prev_value = is_first_frame ? current_threshold :
s->compress_threshold[0];
625 double prev_actual_thresh, curr_actual_thresh;
626 s->compress_threshold[0] = is_first_frame ? current_threshold :
update_value(current_threshold,
s->compress_threshold[0], (1.0/3.0));
631 for (
c = 0;
c <
s->channels;
c++) {
632 double *
const dst_ptr = (
double *)
frame->extended_data[
c];
634 const double localThresh =
fade(prev_actual_thresh, curr_actual_thresh,
i,
frame->nb_samples);
639 for (
c = 0;
c <
s->channels;
c++) {
643 const double prev_value = is_first_frame ? current_threshold :
s->compress_threshold[
c];
644 double prev_actual_thresh, curr_actual_thresh;
646 s->compress_threshold[
c] = is_first_frame ? current_threshold :
update_value(current_threshold,
s->compress_threshold[
c], 1.0/3.0);
651 dst_ptr = (
double *)
frame->extended_data[
c];
653 const double localThresh =
fade(prev_actual_thresh, curr_actual_thresh,
i,
frame->nb_samples);
662 if (
s->dc_correction) {
666 if (
s->compress_factor > DBL_EPSILON) {
670 if (
s->channels_coupled) {
674 for (
c = 0;
c <
s->channels;
c++)
679 for (
c = 0;
c <
s->channels;
c++)
688 for (
c = 0;
c <
s->channels;
c++) {
689 double *dst_ptr = (
double *)
frame->extended_data[
c];
690 double current_amplification_factor;
694 for (
i = 0;
i <
frame->nb_samples && enabled;
i++) {
695 const double amplification_factor =
fade(
s->prev_amplification_factor[
c],
696 current_amplification_factor,
i,
699 dst_ptr[
i] *= amplification_factor;
702 s->prev_amplification_factor[
c] = current_amplification_factor;
713 while (((
s->queue.available >=
s->filter_size) ||
714 (
s->eof &&
s->queue.available)) &&
722 s->pts =
out->pts +
out->nb_samples;
747 for (
c = 0;
c <
s->channels;
c++) {
748 double *dst_ptr = (
double *)
out->extended_data[
c];
751 dst_ptr[
i] =
s->alt_boundary_mode ? DBL_EPSILON : ((
s->target_rms > DBL_EPSILON) ?
FFMIN(
s->peak_value,
s->target_rms) :
s->peak_value);
752 if (
s->dc_correction) {
753 dst_ptr[
i] *= ((
i % 2) == 1) ? -1 : 1;
754 dst_ptr[
i] +=
s->dc_correction_value[
c];
770 }
else if (
s->queue.available) {
773 s->pts =
out->pts +
out->nb_samples;
812 if (
s->eof &&
s->queue.available)
813 return flush(outlink);
815 if (
s->eof && !
s->queue.available) {
827 char *res,
int res_len,
int flags)
831 int prev_filter_size =
s->filter_size;
839 if (prev_filter_size !=
s->filter_size) {
842 for (
int c = 0;
c <
s->channels;
c++) {
872 .
name =
"dynaudnorm",
881 .priv_class = &dynaudnorm_class,
static int config_input(AVFilterLink *inlink)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
A list of supported channel layouts.
#define AV_LOG_WARNING
Something somehow does not look correct.
static int flush_buffer(DynamicAudioNormalizerContext *s, AVFilterLink *inlink, AVFilterLink *outlink)
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
#define AVERROR_EOF
End of file.
static void analyze_frame(DynamicAudioNormalizerContext *s, AVFrame *frame)
AVFILTER_DEFINE_CLASS(dynaudnorm)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
static av_cold int init(AVFilterContext *ctx)
double * dc_correction_value
static void cqueue_resize(cqueue *q, int new_size)
const char * name
Filter name.
A link between two filters.
static const AVFilterPad avfilter_af_dynaudnorm_inputs[]
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
static double find_peak_magnitude(AVFrame *frame, int channel)
static AVFrame * ff_bufqueue_get(struct FFBufQueue *queue)
Get the first buffer from the queue and remove it.
static double val(void *priv, double ch)
static cqueue * cqueue_create(int size, int max_size)
static int activate(AVFilterContext *ctx)
static double update_value(double new, double old, double aggressiveness)
A filter pad used for either input or output.
static const AVFilterPad avfilter_af_dynaudnorm_outputs[]
int ff_inlink_check_available_samples(AVFilterLink *link, unsigned min)
Test if enough samples are available on the link.
static int frame_size(int sample_rate, int frame_len_msec)
static double minimum_filter(cqueue *q)
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
static int cqueue_empty(cqueue *q)
static int adjust(int x, int size)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const AVFilterPad outputs[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline double copysign(double x, double y)
static int cqueue_size(cqueue *q)
static av_cold void uninit(AVFilterContext *ctx)
Describe the class of an AVClass context structure.
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static __device__ float fabs(float a)
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
static local_gain get_max_local_gain(DynamicAudioNormalizerContext *s, AVFrame *frame, int channel)
static double pow_2(const double value)
static void perform_dc_correction(DynamicAudioNormalizerContext *s, AVFrame *frame)
static void ff_bufqueue_discard_all(struct FFBufQueue *queue)
Unref and remove all buffers from the queue.
static int flush(AVFilterLink *outlink)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
cqueue ** threshold_history
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int cqueue_enqueue(cqueue *q, double element)
static float minimum(float src0, float src1)
AVFilter ff_af_dynaudnorm
static double compute_frame_std_dev(DynamicAudioNormalizerContext *s, AVFrame *frame, int channel)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
double * prev_amplification_factor
static void amplify_frame(DynamicAudioNormalizerContext *s, AVFrame *frame, int enabled)
static int cqueue_pop(cqueue *q)
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
static void cqueue_free(cqueue *q)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
FF_FILTER_FORWARD_WANTED(outlink, inlink)
static void ff_bufqueue_add(void *log, struct FFBufQueue *queue, AVFrame *buf)
Add a buffer to the queue.
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
static int query_formats(AVFilterContext *ctx)
double * compress_threshold
static void update_gain_history(DynamicAudioNormalizerContext *s, int channel, local_gain gain)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Structure holding the queue.
#define av_malloc_array(a, b)
cqueue ** gain_history_minimum
AVSampleFormat
Audio sample formats.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
static double gaussian_filter(DynamicAudioNormalizerContext *s, cqueue *q, cqueue *tq)
const char * name
Pad name.
static double erf(double z)
erf function Algorithm taken from the Boost project, source: http://www.boost.org/doc/libs/1_46_1/boo...
static double bound(const double threshold, const double val)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static double cqueue_peek(cqueue *q, int index)
static double compute_frame_rms(AVFrame *frame, int channel)
static void init_gaussian_filter(DynamicAudioNormalizerContext *s)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
static const AVOption dynaudnorm_options[]
cqueue ** gain_history_original
@ AV_SAMPLE_FMT_DBLP
double, planar
#define CONST(name, help, val, unit)
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static double fade(double prev, double next, int pos, int length)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
static void perform_compression(DynamicAudioNormalizerContext *s, AVFrame *frame)
static double setup_compress_thresh(double threshold)
cqueue ** gain_history_smoothed
static int cqueue_dequeue(cqueue *q, double *element)
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.