Go to the documentation of this file.
36 #define FREQUENCY_DOMAIN 1
99 char *
arg, *tokenizer, *p;
100 uint64_t used_channels = 0;
104 uint64_t out_channel;
111 if (used_channels & out_channel) {
115 used_channels |= out_channel;
116 s->mapping[
s->nb_irs] = out_channel;
121 s->nb_hrir_inputs = 1;
123 s->nb_hrir_inputs =
s->nb_irs;
143 int *write = &
td->write[jobnr];
144 const float *
const ir =
td->ir[jobnr];
145 int *n_clippings = &
td->n_clippings[jobnr];
146 float *ringbuffer =
td->ringbuffer[jobnr];
147 float *temp_src =
td->temp_src[jobnr];
148 const int ir_len =
s->ir_len;
149 const int air_len =
s->air_len;
150 const float *
src = (
const float *)
in->data[0];
151 float *dst = (
float *)
out->data[0];
153 const int buffer_length =
s->buffer_length;
154 const uint32_t modulo = (uint32_t)buffer_length - 1;
161 for (l = 0; l < in_channels; l++) {
162 buffer[l] = ringbuffer + l * buffer_length;
165 for (
i = 0;
i <
in->nb_samples;
i++) {
166 const float *cur_ir = ir;
169 for (l = 0; l < in_channels; l++) {
173 for (l = 0; l < in_channels; cur_ir += air_len, l++) {
174 const float *
const bptr =
buffer[l];
176 if (l ==
s->lfe_channel) {
177 *dst += *(
buffer[
s->lfe_channel] + wr) *
s->gain_lfe;
181 read = (wr - (ir_len - 1)) & modulo;
183 if (read + ir_len < buffer_length) {
184 memcpy(temp_src, bptr + read, ir_len *
sizeof(*temp_src));
186 int len =
FFMIN(air_len - (read % ir_len), buffer_length - read);
188 memcpy(temp_src, bptr + read,
len *
sizeof(*temp_src));
189 memcpy(temp_src +
len, bptr, (air_len -
len) *
sizeof(*temp_src));
192 dst[0] +=
s->scalarproduct_float(cur_ir, temp_src,
FFALIGN(ir_len, 32));
195 if (
fabsf(dst[0]) > 1)
200 wr = (wr + 1) & modulo;
214 int *write = &
td->write[jobnr];
216 int *n_clippings = &
td->n_clippings[jobnr];
217 float *ringbuffer =
td->ringbuffer[jobnr];
218 const int ir_len =
s->ir_len;
219 const float *
src = (
const float *)
in->data[0];
220 float *dst = (
float *)
out->data[0];
222 const int buffer_length =
s->buffer_length;
223 const uint32_t modulo = (uint32_t)buffer_length - 1;
228 const int n_fft =
s->n_fft;
229 const float fft_scale = 1.0f /
s->n_fft;
237 n_read =
FFMIN(ir_len,
in->nb_samples);
238 for (j = 0; j < n_read; j++) {
239 dst[2 * j] = ringbuffer[wr];
240 ringbuffer[wr] = 0.0;
241 wr = (wr + 1) & modulo;
244 for (j = n_read; j <
in->nb_samples; j++) {
248 memset(fft_acc, 0,
sizeof(
FFTComplex) * n_fft);
250 for (
i = 0;
i < in_channels;
i++) {
251 if (
i ==
s->lfe_channel) {
252 for (j = 0; j <
in->nb_samples; j++) {
253 dst[2 * j] +=
src[
i + j * in_channels] *
s->gain_lfe;
259 hrtf_offset = hrtf +
offset;
261 memset(fft_in, 0,
sizeof(
FFTComplex) * n_fft);
263 for (j = 0; j <
in->nb_samples; j++) {
264 fft_in[j].
re =
src[j * in_channels +
i];
269 for (j = 0; j < n_fft; j++) {
271 const float re = fft_in[j].
re;
272 const float im = fft_in[j].
im;
274 fft_acc[j].
re +=
re * hcomplex->
re -
im * hcomplex->
im;
275 fft_acc[j].
im +=
re * hcomplex->
im +
im * hcomplex->
re;
282 for (j = 0; j <
in->nb_samples; j++) {
283 dst[2 * j] += fft_acc[j].
re * fft_scale;
284 if (
fabsf(dst[2 * j]) > 1)
288 for (j = 0; j < ir_len - 1; j++) {
289 int write_pos = (wr + j) & modulo;
291 *(ringbuffer + write_pos) += fft_acc[
in->nb_samples + j].
re * fft_scale;
303 int ir_len, max_ir_len;
307 if (ir_len > max_ir_len) {
311 s->hrir_in[input_number].ir_len = ir_len;
312 s->ir_len =
FFMAX(ir_len,
s->ir_len);
320 int n_clippings[2] = { 0 };
332 td.ir =
s->data_ir;
td.n_clippings = n_clippings;
333 td.ringbuffer =
s->ringbuffer;
td.temp_src =
s->temp_src;
334 td.temp_fft =
s->temp_fft;
335 td.temp_afft =
s->temp_afft;
344 if (n_clippings[0] + n_clippings[1] > 0) {
346 n_clippings[0] + n_clippings[1],
out->nb_samples * 2);
357 int nb_input_channels =
ctx->inputs[0]->channels;
358 float gain_lin =
expf((
s->gain - 3 * nb_input_channels) / 20 *
M_LN10);
368 s->buffer_length = 1 << (32 -
ff_clz(
s->air_len));
377 if (!
s->fft[0] || !
s->fft[1] || !
s->ifft[0] || !
s->ifft[1]) {
385 s->ringbuffer[0] =
av_calloc(
s->buffer_length,
sizeof(
float) * nb_input_channels);
386 s->ringbuffer[1] =
av_calloc(
s->buffer_length,
sizeof(
float) * nb_input_channels);
388 s->ringbuffer[0] =
av_calloc(
s->buffer_length,
sizeof(
float));
389 s->ringbuffer[1] =
av_calloc(
s->buffer_length,
sizeof(
float));
394 if (!
s->temp_fft[0] || !
s->temp_fft[1] ||
395 !
s->temp_afft[0] || !
s->temp_afft[1]) {
401 if (!
s->ringbuffer[0] || !
s->ringbuffer[1]) {
407 s->temp_src[0] =
av_calloc(
s->air_len,
sizeof(
float));
408 s->temp_src[1] =
av_calloc(
s->air_len,
sizeof(
float));
410 s->data_ir[0] =
av_calloc(nb_input_channels *
s->air_len,
sizeof(*
s->data_ir[0]));
411 s->data_ir[1] =
av_calloc(nb_input_channels *
s->air_len,
sizeof(*
s->data_ir[1]));
412 if (!
s->data_ir[0] || !
s->data_ir[1] || !
s->temp_src[0] || !
s->temp_src[1]) {
417 s->data_hrtf[0] =
av_calloc(
n_fft,
sizeof(*
s->data_hrtf[0]) * nb_input_channels);
418 s->data_hrtf[1] =
av_calloc(
n_fft,
sizeof(*
s->data_hrtf[1]) * nb_input_channels);
419 if (!
s->data_hrtf[0] || !
s->data_hrtf[1]) {
426 int len =
s->hrir_in[
i].ir_len;
432 ptr = (
float *)
frame->extended_data[0];
440 float *data_ir_l =
s->data_ir[0] + idx *
s->air_len;
441 float *data_ir_r =
s->data_ir[1] + idx *
s->air_len;
443 for (j = 0; j <
len; j++) {
444 data_ir_l[j] = ptr[
len * 2 - j * 2 - 2] * gain_lin;
445 data_ir_r[j] = ptr[
len * 2 - j * 2 - 1] * gain_lin;
451 for (j = 0; j <
len; j++) {
452 fft_in_l[j].
re = ptr[j * 2 ] * gain_lin;
453 fft_in_r[j].
re = ptr[j * 2 + 1] * gain_lin;
462 int I,
N =
ctx->inputs[1]->channels;
464 for (k = 0; k <
N / 2; k++) {
472 float *data_ir_l =
s->data_ir[0] + idx *
s->air_len;
473 float *data_ir_r =
s->data_ir[1] + idx *
s->air_len;
475 for (j = 0; j <
len; j++) {
476 data_ir_l[j] = ptr[
len *
N - j *
N -
N + I ] * gain_lin;
477 data_ir_r[j] = ptr[
len *
N - j *
N -
N + I + 1] * gain_lin;
483 for (j = 0; j <
len; j++) {
484 fft_in_l[j].
re = ptr[j *
N + I ] * gain_lin;
485 fft_in_r[j].
re = ptr[j *
N + I + 1] * gain_lin;
514 for (
i = 0;
i <
s->nb_hrir_inputs;
i++) {
517 if (
s->hrir_in[
i].eof)
526 "HRIR stream %d.\n",
i);
529 s->hrir_in[
i].eof = 1;
543 }
else if (!
s->have_hrirs)
601 for (
i = 1;
i <=
s->nb_hrir_inputs;
i++) {
619 if (
s->nb_irs <
inlink->channels) {
649 for (
i = 0;
i <
s->nb_hrir_inputs;
i++) {
715 for (
unsigned i = 1;
i <
ctx->nb_inputs;
i++)
719 #define OFFSET(x) offsetof(HeadphoneContext, x)
720 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
749 .description =
NULL_IF_CONFIG_SMALL(
"Apply headphone binaural spatialization with HRTFs in additional streams."),
751 .priv_class = &headphone_class,
static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
av_cold void av_fft_end(FFTContext *s)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
A list of supported channel layouts.
#define AV_LOG_WARNING
Something somehow does not look correct.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
enum MovChannelLayoutTag * layouts
#define AVERROR_EOF
End of file.
static int parse_channel_name(const char *arg, uint64_t *rchannel)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
char * av_asprintf(const char *fmt,...)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
uint64_t av_get_channel_layout(const char *name)
Return a channel layout id that matches name, or 0 if no match is found.
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
int channels
Number of channels.
static int ff_insert_inpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new input pad for the filter.
#define FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, filter)
Forward the status on an output link to all input links.
float(* scalarproduct_float)(const float *v1, const float *v2, int len)
static int activate(AVFilterContext *ctx)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AVFILTER_FLAG_DYNAMIC_INPUTS
The number of the filter inputs is not determined just by AVFilter.inputs.
static __device__ float fabsf(float a)
#define AV_CH_LAYOUT_STEREO
static int config_input(AVFilterLink *inlink)
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_CH_LOW_FREQUENCY
float(* scalarproduct_float)(const float *v1, const float *v2, int len)
Calculate the scalar product of two vectors of floats.
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
FFTComplex * data_hrtf[2]
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
static av_cold void uninit(AVFilterContext *ctx)
static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Describe the class of an AVClass context structure.
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
static void parse_map(AVFilterContext *ctx)
static const AVFilterPad outputs[]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
static int query_formats(AVFilterContext *ctx)
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
AVFILTER_DEFINE_CLASS(headphone)
static int headphone_frame(HeadphoneContext *s, AVFrame *in, AVFilterLink *outlink)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
AVFilterContext * src
source filter
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
static const AVOption headphone_options[]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static av_cold int init(AVFilterContext *ctx)
int av_get_channel_layout_channel_index(uint64_t channel_layout, uint64_t channel)
Get the index of a channel in channel_layout.
Used for passing data between threads.
const char * name
Pad name.
int ff_inlink_queued_samples(AVFilterLink *link)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int ff_outlink_get_status(AVFilterLink *link)
Get the status on an output link.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
const VDPAUPixFmtMap * map
FF_FILTER_FORWARD_STATUS(inlink, outlink)
FFTComplex * temp_afft[2]
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
#define flags(name, subs,...)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
struct HeadphoneContext::hrir_inputs hrir_in[64]
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
static int config_output(AVFilterLink *outlink)
static int check_ir(AVFilterLink *inlink, int input_number)