FFmpeg
vf_lut3d.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013 Clément Bœsch
3  * Copyright (c) 2018 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * 3D Lookup table filter
25  */
26 
27 #include <float.h>
28 
29 #include "config_components.h"
30 
31 #include "libavutil/mem.h"
32 #include "libavutil/opt.h"
33 #include "libavutil/file_open.h"
34 #include "libavutil/intfloat.h"
35 #include "libavutil/avassert.h"
36 #include "libavutil/avstring.h"
37 #include "drawutils.h"
38 #include "filters.h"
39 #include "video.h"
40 #include "lut3d.h"
41 
42 #define R 0
43 #define G 1
44 #define B 2
45 #define A 3
46 
47 #define OFFSET(x) offsetof(LUT3DContext, x)
48 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
49 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
50 #define COMMON_OPTIONS \
51  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, .unit = "interp_mode" }, \
52  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
53  { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
54  { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
55  { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
56  { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, .unit = "interp_mode" }, \
57  { NULL }
58 
59 #define EXPONENT_MASK 0x7F800000
60 #define MANTISSA_MASK 0x007FFFFF
61 #define SIGN_MASK 0x80000000
62 
63 static inline float sanitizef(float f)
64 {
65  union av_intfloat32 t;
66  t.f = f;
67 
68  if ((t.i & EXPONENT_MASK) == EXPONENT_MASK) {
69  if ((t.i & MANTISSA_MASK) != 0) {
70  // NAN
71  return 0.0f;
72  } else if (t.i & SIGN_MASK) {
73  // -INF
74  return -FLT_MAX;
75  } else {
76  // +INF
77  return FLT_MAX;
78  }
79  }
80  return f;
81 }
82 
83 static inline float lerpf(float v0, float v1, float f)
84 {
85  return v0 + (v1 - v0) * f;
86 }
87 
88 static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
89 {
90  struct rgbvec v = {
91  lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
92  };
93  return v;
94 }
95 
96 #define NEAR(x) ((int)((x) + .5))
97 #define PREV(x) ((int)(x))
98 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
99 
100 /**
101  * Get the nearest defined point
102  */
103 static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
104  const struct rgbvec *s)
105 {
106  return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)];
107 }
108 
109 /**
110  * Interpolate using the 8 vertices of a cube
111  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
112  */
113 static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
114  const struct rgbvec *s)
115 {
116  const int lutsize2 = lut3d->lutsize2;
117  const int lutsize = lut3d->lutsize;
118  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
119  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
120  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
121  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
122  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
123  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
124  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
125  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
126  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
127  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
128  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
129  const struct rgbvec c00 = lerp(&c000, &c100, d.r);
130  const struct rgbvec c10 = lerp(&c010, &c110, d.r);
131  const struct rgbvec c01 = lerp(&c001, &c101, d.r);
132  const struct rgbvec c11 = lerp(&c011, &c111, d.r);
133  const struct rgbvec c0 = lerp(&c00, &c10, d.g);
134  const struct rgbvec c1 = lerp(&c01, &c11, d.g);
135  const struct rgbvec c = lerp(&c0, &c1, d.b);
136  return c;
137 }
138 
139 static inline struct rgbvec interp_pyramid(const LUT3DContext *lut3d,
140  const struct rgbvec *s)
141 {
142  const int lutsize2 = lut3d->lutsize2;
143  const int lutsize = lut3d->lutsize;
144  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
145  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
146  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
147  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
148  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
149  struct rgbvec c;
150 
151  if (d.g > d.r && d.b > d.r) {
152  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
153  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
154  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
155 
156  c.r = c000.r + (c111.r - c011.r) * d.r + (c010.r - c000.r) * d.g + (c001.r - c000.r) * d.b +
157  (c011.r - c001.r - c010.r + c000.r) * d.g * d.b;
158  c.g = c000.g + (c111.g - c011.g) * d.r + (c010.g - c000.g) * d.g + (c001.g - c000.g) * d.b +
159  (c011.g - c001.g - c010.g + c000.g) * d.g * d.b;
160  c.b = c000.b + (c111.b - c011.b) * d.r + (c010.b - c000.b) * d.g + (c001.b - c000.b) * d.b +
161  (c011.b - c001.b - c010.b + c000.b) * d.g * d.b;
162  } else if (d.r > d.g && d.b > d.g) {
163  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
164  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
165  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
166 
167  c.r = c000.r + (c100.r - c000.r) * d.r + (c111.r - c101.r) * d.g + (c001.r - c000.r) * d.b +
168  (c101.r - c001.r - c100.r + c000.r) * d.r * d.b;
169  c.g = c000.g + (c100.g - c000.g) * d.r + (c111.g - c101.g) * d.g + (c001.g - c000.g) * d.b +
170  (c101.g - c001.g - c100.g + c000.g) * d.r * d.b;
171  c.b = c000.b + (c100.b - c000.b) * d.r + (c111.b - c101.b) * d.g + (c001.b - c000.b) * d.b +
172  (c101.b - c001.b - c100.b + c000.b) * d.r * d.b;
173  } else {
174  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
175  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
176  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
177 
178  c.r = c000.r + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c111.r - c110.r) * d.b +
179  (c110.r - c100.r - c010.r + c000.r) * d.r * d.g;
180  c.g = c000.g + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c111.g - c110.g) * d.b +
181  (c110.g - c100.g - c010.g + c000.g) * d.r * d.g;
182  c.b = c000.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c111.b - c110.b) * d.b +
183  (c110.b - c100.b - c010.b + c000.b) * d.r * d.g;
184  }
185 
186  return c;
187 }
188 
189 static inline struct rgbvec interp_prism(const LUT3DContext *lut3d,
190  const struct rgbvec *s)
191 {
192  const int lutsize2 = lut3d->lutsize2;
193  const int lutsize = lut3d->lutsize;
194  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
195  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
196  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
197  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
198  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
199  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
200  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
201  struct rgbvec c;
202 
203  if (d.b > d.r) {
204  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
205  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
206 
207  c.r = c000.r + (c001.r - c000.r) * d.b + (c101.r - c001.r) * d.r + (c010.r - c000.r) * d.g +
208  (c000.r - c010.r - c001.r + c011.r) * d.b * d.g +
209  (c001.r - c011.r - c101.r + c111.r) * d.r * d.g;
210  c.g = c000.g + (c001.g - c000.g) * d.b + (c101.g - c001.g) * d.r + (c010.g - c000.g) * d.g +
211  (c000.g - c010.g - c001.g + c011.g) * d.b * d.g +
212  (c001.g - c011.g - c101.g + c111.g) * d.r * d.g;
213  c.b = c000.b + (c001.b - c000.b) * d.b + (c101.b - c001.b) * d.r + (c010.b - c000.b) * d.g +
214  (c000.b - c010.b - c001.b + c011.b) * d.b * d.g +
215  (c001.b - c011.b - c101.b + c111.b) * d.r * d.g;
216  } else {
217  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
218  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
219 
220  c.r = c000.r + (c101.r - c100.r) * d.b + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g +
221  (c100.r - c110.r - c101.r + c111.r) * d.b * d.g +
222  (c000.r - c010.r - c100.r + c110.r) * d.r * d.g;
223  c.g = c000.g + (c101.g - c100.g) * d.b + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g +
224  (c100.g - c110.g - c101.g + c111.g) * d.b * d.g +
225  (c000.g - c010.g - c100.g + c110.g) * d.r * d.g;
226  c.b = c000.b + (c101.b - c100.b) * d.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g +
227  (c100.b - c110.b - c101.b + c111.b) * d.b * d.g +
228  (c000.b - c010.b - c100.b + c110.b) * d.r * d.g;
229  }
230 
231  return c;
232 }
233 
234 /**
235  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
236  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
237  */
238 static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
239  const struct rgbvec *s)
240 {
241  const int lutsize2 = lut3d->lutsize2;
242  const int lutsize = lut3d->lutsize;
243  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
244  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
245  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
246  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
247  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
248  struct rgbvec c;
249  if (d.r > d.g) {
250  if (d.g > d.b) {
251  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
252  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
253  c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
254  c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
255  c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
256  } else if (d.r > d.b) {
257  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
258  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
259  c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
260  c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
261  c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
262  } else {
263  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
264  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
265  c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
266  c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
267  c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
268  }
269  } else {
270  if (d.b > d.g) {
271  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
272  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
273  c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
274  c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
275  c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
276  } else if (d.b > d.r) {
277  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
278  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
279  c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
280  c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
281  c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
282  } else {
283  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
284  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
285  c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
286  c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
287  c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
288  }
289  }
290  return c;
291 }
292 
293 static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut,
294  int idx, const float s)
295 {
296  const int lut_max = prelut->size - 1;
297  const float scaled = (s - prelut->min[idx]) * prelut->scale[idx];
298  const float x = av_clipf(scaled, 0.0f, lut_max);
299  const int prev = PREV(x);
300  const int next = FFMIN((int)(x) + 1, lut_max);
301  const float p = prelut->lut[idx][prev];
302  const float n = prelut->lut[idx][next];
303  const float d = x - (float)prev;
304  return lerpf(p, n, d);
305 }
306 
307 static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut,
308  const struct rgbvec *s)
309 {
310  struct rgbvec c;
311 
312  if (prelut->size <= 0)
313  return *s;
314 
315  c.r = prelut_interp_1d_linear(prelut, 0, s->r);
316  c.g = prelut_interp_1d_linear(prelut, 1, s->g);
317  c.b = prelut_interp_1d_linear(prelut, 2, s->b);
318  return c;
319 }
320 
321 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
322 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
323 { \
324  int x, y; \
325  const LUT3DContext *lut3d = ctx->priv; \
326  const Lut3DPreLut *prelut = &lut3d->prelut; \
327  const ThreadData *td = arg; \
328  const AVFrame *in = td->in; \
329  const AVFrame *out = td->out; \
330  const int direct = out == in; \
331  const int slice_start = (in->height * jobnr ) / nb_jobs; \
332  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
333  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
334  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
335  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
336  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
337  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
338  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
339  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
340  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
341  const float lut_max = lut3d->lutsize - 1; \
342  const float scale_f = 1.0f / ((1<<depth) - 1); \
343  const float scale_r = lut3d->scale.r * lut_max; \
344  const float scale_g = lut3d->scale.g * lut_max; \
345  const float scale_b = lut3d->scale.b * lut_max; \
346  \
347  for (y = slice_start; y < slice_end; y++) { \
348  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
349  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
350  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
351  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
352  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
353  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
354  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
355  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
356  for (x = 0; x < in->width; x++) { \
357  const struct rgbvec rgb = {srcr[x] * scale_f, \
358  srcg[x] * scale_f, \
359  srcb[x] * scale_f}; \
360  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
361  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
362  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
363  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
364  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
365  dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
366  dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
367  dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
368  if (!direct && in->linesize[3]) \
369  dsta[x] = srca[x]; \
370  } \
371  grow += out->linesize[0]; \
372  brow += out->linesize[1]; \
373  rrow += out->linesize[2]; \
374  arow += out->linesize[3]; \
375  srcgrow += in->linesize[0]; \
376  srcbrow += in->linesize[1]; \
377  srcrrow += in->linesize[2]; \
378  srcarow += in->linesize[3]; \
379  } \
380  return 0; \
381 }
382 
383 DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8)
384 DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8)
385 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
386 DEFINE_INTERP_FUNC_PLANAR(pyramid, 8, 8)
387 DEFINE_INTERP_FUNC_PLANAR(prism, 8, 8)
388 
389 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9)
390 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9)
391 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
392 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 9)
393 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 9)
394 
395 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10)
396 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10)
397 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
398 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 10)
399 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 10)
400 
401 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12)
402 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12)
403 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
404 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 12)
405 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 12)
406 
407 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14)
408 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14)
409 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
410 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 14)
411 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 14)
412 
413 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16)
414 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16)
415 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
416 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 16)
417 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 16)
418 
419 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
420 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
421 { \
422  int x, y; \
423  const LUT3DContext *lut3d = ctx->priv; \
424  const Lut3DPreLut *prelut = &lut3d->prelut; \
425  const ThreadData *td = arg; \
426  const AVFrame *in = td->in; \
427  const AVFrame *out = td->out; \
428  const int direct = out == in; \
429  const int slice_start = (in->height * jobnr ) / nb_jobs; \
430  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
431  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
432  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
433  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
434  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
435  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
436  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
437  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
438  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
439  const float lut_max = lut3d->lutsize - 1; \
440  const float scale_r = lut3d->scale.r * lut_max; \
441  const float scale_g = lut3d->scale.g * lut_max; \
442  const float scale_b = lut3d->scale.b * lut_max; \
443  \
444  for (y = slice_start; y < slice_end; y++) { \
445  float *dstg = (float *)grow; \
446  float *dstb = (float *)brow; \
447  float *dstr = (float *)rrow; \
448  float *dsta = (float *)arow; \
449  const float *srcg = (const float *)srcgrow; \
450  const float *srcb = (const float *)srcbrow; \
451  const float *srcr = (const float *)srcrrow; \
452  const float *srca = (const float *)srcarow; \
453  for (x = 0; x < in->width; x++) { \
454  const struct rgbvec rgb = {sanitizef(srcr[x]), \
455  sanitizef(srcg[x]), \
456  sanitizef(srcb[x])}; \
457  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
458  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
459  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
460  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
461  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
462  dstr[x] = vec.r; \
463  dstg[x] = vec.g; \
464  dstb[x] = vec.b; \
465  if (!direct && in->linesize[3]) \
466  dsta[x] = srca[x]; \
467  } \
468  grow += out->linesize[0]; \
469  brow += out->linesize[1]; \
470  rrow += out->linesize[2]; \
471  arow += out->linesize[3]; \
472  srcgrow += in->linesize[0]; \
473  srcbrow += in->linesize[1]; \
474  srcrrow += in->linesize[2]; \
475  srcarow += in->linesize[3]; \
476  } \
477  return 0; \
478 }
479 
481 DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear, 32)
482 DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32)
485 
486 #define DEFINE_INTERP_FUNC(name, nbits) \
487 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
488 { \
489  int x, y; \
490  const LUT3DContext *lut3d = ctx->priv; \
491  const Lut3DPreLut *prelut = &lut3d->prelut; \
492  const ThreadData *td = arg; \
493  const AVFrame *in = td->in; \
494  const AVFrame *out = td->out; \
495  const int direct = out == in; \
496  const int step = lut3d->step; \
497  const uint8_t r = lut3d->rgba_map[R]; \
498  const uint8_t g = lut3d->rgba_map[G]; \
499  const uint8_t b = lut3d->rgba_map[B]; \
500  const uint8_t a = lut3d->rgba_map[A]; \
501  const int slice_start = (in->height * jobnr ) / nb_jobs; \
502  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
503  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
504  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
505  const float lut_max = lut3d->lutsize - 1; \
506  const float scale_f = 1.0f / ((1<<nbits) - 1); \
507  const float scale_r = lut3d->scale.r * lut_max; \
508  const float scale_g = lut3d->scale.g * lut_max; \
509  const float scale_b = lut3d->scale.b * lut_max; \
510  \
511  for (y = slice_start; y < slice_end; y++) { \
512  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
513  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
514  for (x = 0; x < in->width * step; x += step) { \
515  const struct rgbvec rgb = {src[x + r] * scale_f, \
516  src[x + g] * scale_f, \
517  src[x + b] * scale_f}; \
518  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
519  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
520  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
521  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
522  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
523  dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
524  dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
525  dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
526  if (!direct && step == 4) \
527  dst[x + a] = src[x + a]; \
528  } \
529  dstrow += out->linesize[0]; \
530  srcrow += in ->linesize[0]; \
531  } \
532  return 0; \
533 }
534 
535 DEFINE_INTERP_FUNC(nearest, 8)
536 DEFINE_INTERP_FUNC(trilinear, 8)
537 DEFINE_INTERP_FUNC(tetrahedral, 8)
538 DEFINE_INTERP_FUNC(pyramid, 8)
539 DEFINE_INTERP_FUNC(prism, 8)
540 
541 DEFINE_INTERP_FUNC(nearest, 16)
542 DEFINE_INTERP_FUNC(trilinear, 16)
543 DEFINE_INTERP_FUNC(tetrahedral, 16)
544 DEFINE_INTERP_FUNC(pyramid, 16)
545 DEFINE_INTERP_FUNC(prism, 16)
546 
547 #define MAX_LINE_SIZE 512
548 
549 static int skip_line(const char *p)
550 {
551  while (*p && av_isspace(*p))
552  p++;
553  return !*p || *p == '#';
554 }
555 
556 static char* fget_next_word(char* dst, int max, FILE* f)
557 {
558  int c;
559  char *p = dst;
560 
561  /* for null */
562  max--;
563  /* skip until next non whitespace char */
564  while ((c = fgetc(f)) != EOF) {
565  if (av_isspace(c))
566  continue;
567 
568  *p++ = c;
569  max--;
570  break;
571  }
572 
573  /* get max bytes or up until next whitespace char */
574  for (; max > 0; max--) {
575  if ((c = fgetc(f)) == EOF)
576  break;
577 
578  if (av_isspace(c))
579  break;
580 
581  *p++ = c;
582  }
583 
584  *p = 0;
585  if (p == dst)
586  return NULL;
587  return p;
588 }
589 
590 #define NEXT_LINE(loop_cond) do { \
591  if (!fgets(line, sizeof(line), f)) { \
592  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
593  return AVERROR_INVALIDDATA; \
594  } \
595 } while (loop_cond)
596 
597 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
598  if (!fgets(line, sizeof(line), f)) { \
599  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
600  ret = AVERROR_INVALIDDATA; \
601  goto label; \
602  } \
603 } while (loop_cond)
604 
605 static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
606 {
607  LUT3DContext *lut3d = ctx->priv;
608  int i;
609  if (lutsize < 2 || lutsize > MAX_LEVEL) {
610  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
611  return AVERROR(EINVAL);
612  }
613 
614  av_freep(&lut3d->lut);
615  lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut));
616  if (!lut3d->lut)
617  return AVERROR(ENOMEM);
618 
619  if (prelut) {
620  lut3d->prelut.size = PRELUT_SIZE;
621  for (i = 0; i < 3; i++) {
622  av_freep(&lut3d->prelut.lut[i]);
623  lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0]));
624  if (!lut3d->prelut.lut[i])
625  return AVERROR(ENOMEM);
626  }
627  } else {
628  lut3d->prelut.size = 0;
629  for (i = 0; i < 3; i++) {
630  av_freep(&lut3d->prelut.lut[i]);
631  }
632  }
633  lut3d->lutsize = lutsize;
634  lut3d->lutsize2 = lutsize * lutsize;
635  return 0;
636 }
637 
638 /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
639  * directive; seems to be generated by Davinci */
640 static int parse_dat(AVFilterContext *ctx, FILE *f)
641 {
642  LUT3DContext *lut3d = ctx->priv;
643  char line[MAX_LINE_SIZE];
644  int ret, i, j, k, size, size2;
645 
646  lut3d->lutsize = size = 33;
647  size2 = size * size;
648 
650  if (!strncmp(line, "3DLUTSIZE ", 10)) {
651  size = strtol(line + 10, NULL, 0);
652 
654  }
655 
656  ret = allocate_3dlut(ctx, size, 0);
657  if (ret < 0)
658  return ret;
659 
660  for (k = 0; k < size; k++) {
661  for (j = 0; j < size; j++) {
662  for (i = 0; i < size; i++) {
663  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
664  if (k != 0 || j != 0 || i != 0)
666  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
667  return AVERROR_INVALIDDATA;
668  }
669  }
670  }
671  return 0;
672 }
673 
674 /* Iridas format */
675 static int parse_cube(AVFilterContext *ctx, FILE *f)
676 {
677  LUT3DContext *lut3d = ctx->priv;
678  char line[MAX_LINE_SIZE];
679  float min[3] = {0.0, 0.0, 0.0};
680  float max[3] = {1.0, 1.0, 1.0};
681 
682  while (fgets(line, sizeof(line), f)) {
683  if (!strncmp(line, "LUT_3D_SIZE", 11)) {
684  int ret, i, j, k;
685  const int size = strtol(line + 12, NULL, 0);
686  const int size2 = size * size;
687 
688  ret = allocate_3dlut(ctx, size, 0);
689  if (ret < 0)
690  return ret;
691 
692  for (k = 0; k < size; k++) {
693  for (j = 0; j < size; j++) {
694  for (i = 0; i < size; i++) {
695  struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
696 
697  do {
698 try_again:
699  NEXT_LINE(0);
700  if (!strncmp(line, "DOMAIN_", 7)) {
701  float *vals = NULL;
702  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
703  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
704  if (!vals)
705  return AVERROR_INVALIDDATA;
706  if (av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2) != 3)
707  return AVERROR_INVALIDDATA;
708  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
709  min[0], min[1], min[2], max[0], max[1], max[2]);
710  goto try_again;
711  } else if (!strncmp(line, "TITLE", 5)) {
712  goto try_again;
713  }
714  } while (skip_line(line));
715  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
716  return AVERROR_INVALIDDATA;
717  }
718  }
719  }
720  break;
721  }
722  }
723 
724  lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
725  lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
726  lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
727 
728  return 0;
729 }
730 
731 /* Assume 17x17x17 LUT with a 16-bit depth
732  * FIXME: it seems there are various 3dl formats */
733 static int parse_3dl(AVFilterContext *ctx, FILE *f)
734 {
735  char line[MAX_LINE_SIZE];
736  LUT3DContext *lut3d = ctx->priv;
737  int ret, i, j, k;
738  const int size = 17;
739  const int size2 = 17 * 17;
740  const float scale = 16*16*16;
741 
742  lut3d->lutsize = size;
743 
744  ret = allocate_3dlut(ctx, size, 0);
745  if (ret < 0)
746  return ret;
747 
749  for (k = 0; k < size; k++) {
750  for (j = 0; j < size; j++) {
751  for (i = 0; i < size; i++) {
752  int r, g, b;
753  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
754 
756  if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
757  return AVERROR_INVALIDDATA;
758  vec->r = r / scale;
759  vec->g = g / scale;
760  vec->b = b / scale;
761  }
762  }
763  }
764  return 0;
765 }
766 
767 /* Pandora format */
768 static int parse_m3d(AVFilterContext *ctx, FILE *f)
769 {
770  LUT3DContext *lut3d = ctx->priv;
771  float scale;
772  int ret, i, j, k, size, size2, in = -1, out = -1;
773  char line[MAX_LINE_SIZE];
774  uint8_t rgb_map[3] = {0, 1, 2};
775 
776  while (fgets(line, sizeof(line), f)) {
777  if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
778  else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
779  else if (!strncmp(line, "values", 6)) {
780  const char *p = line + 6;
781 #define SET_COLOR(id) do { \
782  while (av_isspace(*p)) \
783  p++; \
784  switch (*p) { \
785  case 'r': rgb_map[id] = 0; break; \
786  case 'g': rgb_map[id] = 1; break; \
787  case 'b': rgb_map[id] = 2; break; \
788  } \
789  while (*p && !av_isspace(*p)) \
790  p++; \
791 } while (0)
792  SET_COLOR(0);
793  SET_COLOR(1);
794  SET_COLOR(2);
795  break;
796  }
797  }
798 
799  if (in == -1 || out == -1) {
800  av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
801  return AVERROR_INVALIDDATA;
802  }
803  if (in < 2 || out < 2 ||
806  av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
807  return AVERROR_INVALIDDATA;
808  }
809  for (size = 1; size*size*size < in; size++);
810  lut3d->lutsize = size;
811  size2 = size * size;
812 
813  ret = allocate_3dlut(ctx, size, 0);
814  if (ret < 0)
815  return ret;
816 
817  scale = 1. / (out - 1);
818 
819  for (k = 0; k < size; k++) {
820  for (j = 0; j < size; j++) {
821  for (i = 0; i < size; i++) {
822  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
823  float val[3];
824 
825  NEXT_LINE(0);
826  if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
827  return AVERROR_INVALIDDATA;
828  vec->r = val[rgb_map[0]] * scale;
829  vec->g = val[rgb_map[1]] * scale;
830  vec->b = val[rgb_map[2]] * scale;
831  }
832  }
833  }
834  return 0;
835 }
836 
837 static int nearest_sample_index(float *data, float x, int low, int hi)
838 {
839  int mid;
840  if (x < data[low])
841  return low;
842 
843  if (x > data[hi])
844  return hi;
845 
846  for (;;) {
847  av_assert0(x >= data[low]);
848  av_assert0(x <= data[hi]);
849  av_assert0((hi-low) > 0);
850 
851  if (hi - low == 1)
852  return low;
853 
854  mid = (low + hi) / 2;
855 
856  if (x < data[mid])
857  hi = mid;
858  else
859  low = mid;
860  }
861 
862  return 0;
863 }
864 
865 #define NEXT_FLOAT_OR_GOTO(value, label) \
866  if (!fget_next_word(line, sizeof(line) ,f)) { \
867  ret = AVERROR_INVALIDDATA; \
868  goto label; \
869  } \
870  if (av_sscanf(line, "%f", &value) != 1) { \
871  ret = AVERROR_INVALIDDATA; \
872  goto label; \
873  }
874 
876 {
877  LUT3DContext *lut3d = ctx->priv;
878  char line[MAX_LINE_SIZE];
879  float in_min[3] = {0.0, 0.0, 0.0};
880  float in_max[3] = {1.0, 1.0, 1.0};
881  float out_min[3] = {0.0, 0.0, 0.0};
882  float out_max[3] = {1.0, 1.0, 1.0};
883  int inside_metadata = 0, size, size2;
884  int prelut = 0;
885  int ret = 0;
886 
887  int prelut_sizes[3] = {0, 0, 0};
888  float *in_prelut[3] = {NULL, NULL, NULL};
889  float *out_prelut[3] = {NULL, NULL, NULL};
890 
892  if (strncmp(line, "CSPLUTV100", 10)) {
893  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
894  ret = AVERROR(EINVAL);
895  goto end;
896  }
897 
899  if (strncmp(line, "3D", 2)) {
900  av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n");
901  ret = AVERROR(EINVAL);
902  goto end;
903  }
904 
905  while (1) {
907 
908  if (!strncmp(line, "BEGIN METADATA", 14)) {
909  inside_metadata = 1;
910  continue;
911  }
912  if (!strncmp(line, "END METADATA", 12)) {
913  inside_metadata = 0;
914  continue;
915  }
916  if (inside_metadata == 0) {
917  int size_r, size_g, size_b;
918 
919  for (int i = 0; i < 3; i++) {
920  int npoints = strtol(line, NULL, 0);
921 
922  if (npoints > 2) {
923  float v,last;
924 
925  if (npoints > PRELUT_SIZE) {
926  av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n");
928  goto end;
929  }
930 
931  if (in_prelut[i] || out_prelut[i]) {
932  av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n");
934  goto end;
935  }
936 
937  in_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
938  out_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
939  if (!in_prelut[i] || !out_prelut[i]) {
940  ret = AVERROR(ENOMEM);
941  goto end;
942  }
943 
944  prelut_sizes[i] = npoints;
945  in_min[i] = FLT_MAX;
946  in_max[i] = -FLT_MAX;
947  out_min[i] = FLT_MAX;
948  out_max[i] = -FLT_MAX;
949 
950  for (int j = 0; j < npoints; j++) {
951  NEXT_FLOAT_OR_GOTO(v, end)
952  in_min[i] = FFMIN(in_min[i], v);
953  in_max[i] = FFMAX(in_max[i], v);
954  in_prelut[i][j] = v;
955  if (j > 0 && v < last) {
956  av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n");
957  ret = AVERROR(ENOMEM);
958  goto end;
959  }
960  last = v;
961  }
962 
963  for (int j = 0; j < npoints; j++) {
964  NEXT_FLOAT_OR_GOTO(v, end)
965  out_min[i] = FFMIN(out_min[i], v);
966  out_max[i] = FFMAX(out_max[i], v);
967  out_prelut[i][j] = v;
968  }
969 
970  } else if (npoints == 2) {
972  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) {
974  goto end;
975  }
977  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) {
979  goto end;
980  }
981 
982  } else {
983  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
985  goto end;
986  }
987 
989  }
990 
991  if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) {
992  ret = AVERROR(EINVAL);
993  goto end;
994  }
995  if (size_r != size_g || size_r != size_b) {
996  av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
998  goto end;
999  }
1000 
1001  size = size_r;
1002  size2 = size * size;
1003 
1004  if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1005  prelut = 1;
1006 
1007  ret = allocate_3dlut(ctx, size, prelut);
1008  if (ret < 0)
1009  return ret;
1010 
1011  for (int k = 0; k < size; k++) {
1012  for (int j = 0; j < size; j++) {
1013  for (int i = 0; i < size; i++) {
1014  struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
1015 
1017  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) {
1019  goto end;
1020  }
1021 
1022  vec->r *= out_max[0] - out_min[0];
1023  vec->g *= out_max[1] - out_min[1];
1024  vec->b *= out_max[2] - out_min[2];
1025  }
1026  }
1027  }
1028 
1029  break;
1030  }
1031  }
1032 
1033  if (prelut) {
1034  for (int c = 0; c < 3; c++) {
1035 
1036  lut3d->prelut.min[c] = in_min[c];
1037  lut3d->prelut.max[c] = in_max[c];
1038  lut3d->prelut.scale[c] = (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1);
1039 
1040  for (int i = 0; i < lut3d->prelut.size; ++i) {
1041  float mix = (float) i / (float)(lut3d->prelut.size - 1);
1042  float x = lerpf(in_min[c], in_max[c], mix), a, b;
1043 
1044  int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1);
1045  av_assert0(idx + 1 < prelut_sizes[c]);
1046 
1047  a = out_prelut[c][idx + 0];
1048  b = out_prelut[c][idx + 1];
1049  mix = x - in_prelut[c][idx];
1050 
1051  lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix));
1052  }
1053  }
1054  lut3d->scale.r = 1.00f;
1055  lut3d->scale.g = 1.00f;
1056  lut3d->scale.b = 1.00f;
1057 
1058  } else {
1059  lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1060  lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1061  lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1062  }
1063 
1064 end:
1065  for (int c = 0; c < 3; c++) {
1066  av_freep(&in_prelut[c]);
1067  av_freep(&out_prelut[c]);
1068  }
1069  return ret;
1070 }
1071 
1073 {
1074  LUT3DContext *lut3d = ctx->priv;
1075  int ret, i, j, k;
1076  const int size2 = size * size;
1077  const float c = 1. / (size - 1);
1078 
1079  ret = allocate_3dlut(ctx, size, 0);
1080  if (ret < 0)
1081  return ret;
1082 
1083  for (k = 0; k < size; k++) {
1084  for (j = 0; j < size; j++) {
1085  for (i = 0; i < size; i++) {
1086  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
1087  vec->r = k * c;
1088  vec->g = j * c;
1089  vec->b = i * c;
1090  }
1091  }
1092  }
1093 
1094  return 0;
1095 }
1096 
1097 static const enum AVPixelFormat pix_fmts[] = {
1113 };
1114 
1115 #if CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER
1116 
1117 static int config_input(AVFilterLink *inlink)
1118 {
1119  int depth, is16bit, isfloat, planar;
1120  LUT3DContext *lut3d = inlink->dst->priv;
1122 
1123  depth = desc->comp[0].depth;
1124  is16bit = desc->comp[0].depth > 8;
1125  planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
1126  isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1127  ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
1128  lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
1129 
1130 #define SET_FUNC(name) do { \
1131  if (planar && !isfloat) { \
1132  switch (depth) { \
1133  case 8: lut3d->interp = interp_8_##name##_p8; break; \
1134  case 9: lut3d->interp = interp_16_##name##_p9; break; \
1135  case 10: lut3d->interp = interp_16_##name##_p10; break; \
1136  case 12: lut3d->interp = interp_16_##name##_p12; break; \
1137  case 14: lut3d->interp = interp_16_##name##_p14; break; \
1138  case 16: lut3d->interp = interp_16_##name##_p16; break; \
1139  } \
1140  } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1141  } else if (is16bit) { lut3d->interp = interp_16_##name; \
1142  } else { lut3d->interp = interp_8_##name; } \
1143 } while (0)
1144 
1145  switch (lut3d->interpolation) {
1146  case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
1147  case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
1148  case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
1149  case INTERPOLATE_PYRAMID: SET_FUNC(pyramid); break;
1150  case INTERPOLATE_PRISM: SET_FUNC(prism); break;
1151  default:
1152  av_assert0(0);
1153  }
1154 
1155 #if ARCH_X86
1156  ff_lut3d_init_x86(lut3d, desc);
1157 #endif
1158 
1159  return 0;
1160 }
1161 
1163 {
1164  AVFilterContext *ctx = inlink->dst;
1165  LUT3DContext *lut3d = ctx->priv;
1166  AVFilterLink *outlink = inlink->dst->outputs[0];
1167  AVFrame *out;
1168  ThreadData td;
1169 
1170  if (av_frame_is_writable(in)) {
1171  out = in;
1172  } else {
1173  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1174  if (!out) {
1175  av_frame_free(&in);
1176  return NULL;
1177  }
1178  av_frame_copy_props(out, in);
1179  }
1180 
1181  td.in = in;
1182  td.out = out;
1183  ff_filter_execute(ctx, lut3d->interp, &td, NULL,
1184  FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
1185 
1186  if (out != in)
1187  av_frame_free(&in);
1188 
1189  return out;
1190 }
1191 
1192 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
1193 {
1194  AVFilterLink *outlink = inlink->dst->outputs[0];
1195  AVFrame *out = apply_lut(inlink, in);
1196  if (!out)
1197  return AVERROR(ENOMEM);
1198  return ff_filter_frame(outlink, out);
1199 }
1200 
1201 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
1202  char *res, int res_len, int flags)
1203 {
1204  int ret;
1205 
1206  ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
1207  if (ret < 0)
1208  return ret;
1209 
1210  return config_input(ctx->inputs[0]);
1211 }
1212 
1213 /* These options are shared between several filters;
1214  * &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET] must always
1215  * point to the first of the COMMON_OPTIONS. */
1216 #define COMMON_OPTIONS_OFFSET CONFIG_LUT3D_FILTER
1217 static const AVOption lut3d_haldclut_options[] = {
1218 #if CONFIG_LUT3D_FILTER
1219  { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1220 #endif
1221 #if CONFIG_HALDCLUT_FILTER
1222  { "clut", "when to process CLUT", OFFSET(clut), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = TFLAGS, .unit = "clut" },
1223  { "first", "process only first CLUT, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = TFLAGS, .unit = "clut" },
1224  { "all", "process all CLUTs", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = TFLAGS, .unit = "clut" },
1225 #endif
1227 };
1228 
1229 #if CONFIG_LUT3D_FILTER
1230 
1231 AVFILTER_DEFINE_CLASS_EXT(lut3d, "lut3d", lut3d_haldclut_options);
1232 
1233 static av_cold int lut3d_init(AVFilterContext *ctx)
1234 {
1235  int ret;
1236  FILE *f;
1237  const char *ext;
1238  LUT3DContext *lut3d = ctx->priv;
1239 
1240  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1241 
1242  if (!lut3d->file) {
1243  return set_identity_matrix(ctx, 32);
1244  }
1245 
1246  f = avpriv_fopen_utf8(lut3d->file, "r");
1247  if (!f) {
1248  ret = AVERROR(errno);
1249  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
1250  return ret;
1251  }
1252 
1253  ext = strrchr(lut3d->file, '.');
1254  if (!ext) {
1255  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
1257  goto end;
1258  }
1259  ext++;
1260 
1261  if (!av_strcasecmp(ext, "dat")) {
1262  ret = parse_dat(ctx, f);
1263  } else if (!av_strcasecmp(ext, "3dl")) {
1264  ret = parse_3dl(ctx, f);
1265  } else if (!av_strcasecmp(ext, "cube")) {
1266  ret = parse_cube(ctx, f);
1267  } else if (!av_strcasecmp(ext, "m3d")) {
1268  ret = parse_m3d(ctx, f);
1269  } else if (!av_strcasecmp(ext, "csp")) {
1270  ret = parse_cinespace(ctx, f);
1271  } else {
1272  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
1273  ret = AVERROR(EINVAL);
1274  }
1275 
1276  if (!ret && !lut3d->lutsize) {
1277  av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
1279  }
1280 
1281 end:
1282  fclose(f);
1283  return ret;
1284 }
1285 
1286 static av_cold void lut3d_uninit(AVFilterContext *ctx)
1287 {
1288  LUT3DContext *lut3d = ctx->priv;
1289  int i;
1290  av_freep(&lut3d->lut);
1291 
1292  for (i = 0; i < 3; i++) {
1293  av_freep(&lut3d->prelut.lut[i]);
1294  }
1295 }
1296 
1297 static const AVFilterPad lut3d_inputs[] = {
1298  {
1299  .name = "default",
1300  .type = AVMEDIA_TYPE_VIDEO,
1301  .filter_frame = filter_frame,
1302  .config_props = config_input,
1303  },
1304 };
1305 
1306 const AVFilter ff_vf_lut3d = {
1307  .name = "lut3d",
1308  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
1309  .priv_size = sizeof(LUT3DContext),
1310  .init = lut3d_init,
1311  .uninit = lut3d_uninit,
1312  FILTER_INPUTS(lut3d_inputs),
1315  .priv_class = &lut3d_class,
1317  .process_command = process_command,
1318 };
1319 #endif
1320 
1321 #if CONFIG_HALDCLUT_FILTER
1322 
1323 static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
1324 {
1325  const uint8_t *data = frame->data[0];
1326  const ptrdiff_t linesize = frame->linesize[0];
1327  const int w = lut3d->clut_width;
1328  const int step = lut3d->clut_step;
1329  const uint8_t *rgba_map = lut3d->clut_rgba_map;
1330  const int level = lut3d->lutsize;
1331  const int level2 = lut3d->lutsize2;
1332 
1333 #define LOAD_CLUT(nbits) do { \
1334  int i, j, k, x = 0, y = 0; \
1335  \
1336  for (k = 0; k < level; k++) { \
1337  for (j = 0; j < level; j++) { \
1338  for (i = 0; i < level; i++) { \
1339  const uint##nbits##_t *src = (const uint##nbits##_t *) \
1340  (data + y*linesize + x*step); \
1341  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1342  vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1343  vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1344  vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1345  if (++x == w) { \
1346  x = 0; \
1347  y++; \
1348  } \
1349  } \
1350  } \
1351  } \
1352 } while (0)
1353 
1354  switch (lut3d->clut_bits) {
1355  case 8: LOAD_CLUT(8); break;
1356  case 16: LOAD_CLUT(16); break;
1357  }
1358 }
1359 
1360 static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
1361 {
1362  const uint8_t *datag = frame->data[0];
1363  const uint8_t *datab = frame->data[1];
1364  const uint8_t *datar = frame->data[2];
1365  const ptrdiff_t glinesize = frame->linesize[0];
1366  const ptrdiff_t blinesize = frame->linesize[1];
1367  const ptrdiff_t rlinesize = frame->linesize[2];
1368  const int w = lut3d->clut_width;
1369  const int level = lut3d->lutsize;
1370  const int level2 = lut3d->lutsize2;
1371 
1372 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1373  int i, j, k, x = 0, y = 0; \
1374  \
1375  for (k = 0; k < level; k++) { \
1376  for (j = 0; j < level; j++) { \
1377  for (i = 0; i < level; i++) { \
1378  const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1379  (datag + y*glinesize); \
1380  const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1381  (datab + y*blinesize); \
1382  const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1383  (datar + y*rlinesize); \
1384  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1385  vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1386  vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1387  vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1388  if (++x == w) { \
1389  x = 0; \
1390  y++; \
1391  } \
1392  } \
1393  } \
1394  } \
1395 } while (0)
1396 
1397  switch (lut3d->clut_bits) {
1398  case 8: LOAD_CLUT_PLANAR(8, 8); break;
1399  case 9: LOAD_CLUT_PLANAR(16, 9); break;
1400  case 10: LOAD_CLUT_PLANAR(16, 10); break;
1401  case 12: LOAD_CLUT_PLANAR(16, 12); break;
1402  case 14: LOAD_CLUT_PLANAR(16, 14); break;
1403  case 16: LOAD_CLUT_PLANAR(16, 16); break;
1404  }
1405 }
1406 
1407 static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame)
1408 {
1409  const uint8_t *datag = frame->data[0];
1410  const uint8_t *datab = frame->data[1];
1411  const uint8_t *datar = frame->data[2];
1412  const ptrdiff_t glinesize = frame->linesize[0];
1413  const ptrdiff_t blinesize = frame->linesize[1];
1414  const ptrdiff_t rlinesize = frame->linesize[2];
1415  const int w = lut3d->clut_width;
1416  const int level = lut3d->lutsize;
1417  const int level2 = lut3d->lutsize2;
1418 
1419  int i, j, k, x = 0, y = 0;
1420 
1421  for (k = 0; k < level; k++) {
1422  for (j = 0; j < level; j++) {
1423  for (i = 0; i < level; i++) {
1424  const float *gsrc = (const float *)(datag + y*glinesize);
1425  const float *bsrc = (const float *)(datab + y*blinesize);
1426  const float *rsrc = (const float *)(datar + y*rlinesize);
1427  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k];
1428  vec->r = rsrc[x];
1429  vec->g = gsrc[x];
1430  vec->b = bsrc[x];
1431  if (++x == w) {
1432  x = 0;
1433  y++;
1434  }
1435  }
1436  }
1437  }
1438 }
1439 
1440 static int config_output(AVFilterLink *outlink)
1441 {
1442  AVFilterContext *ctx = outlink->src;
1443  LUT3DContext *lut3d = ctx->priv;
1444  int ret;
1445 
1446  ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
1447  if (ret < 0)
1448  return ret;
1449  outlink->w = ctx->inputs[0]->w;
1450  outlink->h = ctx->inputs[0]->h;
1451  outlink->time_base = ctx->inputs[0]->time_base;
1452  if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
1453  return ret;
1454  return 0;
1455 }
1456 
1457 static int activate(AVFilterContext *ctx)
1458 {
1459  LUT3DContext *s = ctx->priv;
1460  return ff_framesync_activate(&s->fs);
1461 }
1462 
1463 static int config_clut(AVFilterLink *inlink)
1464 {
1465  int size, level, w, h;
1466  AVFilterContext *ctx = inlink->dst;
1467  LUT3DContext *lut3d = ctx->priv;
1469 
1470  av_assert0(desc);
1471 
1472  lut3d->clut_bits = desc->comp[0].depth;
1473  lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
1474  lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1475 
1476  lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
1477  ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
1478 
1479  if (inlink->w > inlink->h)
1480  av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
1481  "Hald CLUT will be ignored\n", inlink->w - inlink->h);
1482  else if (inlink->w < inlink->h)
1483  av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
1484  "Hald CLUT will be ignored\n", inlink->h - inlink->w);
1485  lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
1486 
1487  for (level = 1; level*level*level < w; level++);
1488  size = level*level*level;
1489  if (size != w) {
1490  av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
1491  return AVERROR_INVALIDDATA;
1492  }
1493  av_assert0(w == h && w == size);
1494  level *= level;
1495  if (level > MAX_LEVEL) {
1496  const int max_clut_level = sqrt(MAX_LEVEL);
1497  const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1498  av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
1499  "(maximum level is %d, or %dx%d CLUT)\n",
1500  max_clut_level, max_clut_size, max_clut_size);
1501  return AVERROR(EINVAL);
1502  }
1503 
1504  return allocate_3dlut(ctx, level, 0);
1505 }
1506 
1507 static int update_apply_clut(FFFrameSync *fs)
1508 {
1509  AVFilterContext *ctx = fs->parent;
1510  LUT3DContext *lut3d = ctx->priv;
1511  AVFilterLink *inlink = ctx->inputs[0];
1512  AVFrame *master, *second, *out;
1513  int ret;
1514 
1515  ret = ff_framesync_dualinput_get(fs, &master, &second);
1516  if (ret < 0)
1517  return ret;
1518  if (!second)
1519  return ff_filter_frame(ctx->outputs[0], master);
1520  if (lut3d->clut || !lut3d->got_clut) {
1521  if (lut3d->clut_float)
1522  update_clut_float(ctx->priv, second);
1523  else if (lut3d->clut_planar)
1524  update_clut_planar(ctx->priv, second);
1525  else
1526  update_clut_packed(ctx->priv, second);
1527  lut3d->got_clut = 1;
1528  }
1529  out = apply_lut(inlink, master);
1530  return ff_filter_frame(ctx->outputs[0], out);
1531 }
1532 
1533 static av_cold int haldclut_init(AVFilterContext *ctx)
1534 {
1535  LUT3DContext *lut3d = ctx->priv;
1536  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1537  lut3d->fs.on_event = update_apply_clut;
1538  return 0;
1539 }
1540 
1541 static av_cold void haldclut_uninit(AVFilterContext *ctx)
1542 {
1543  LUT3DContext *lut3d = ctx->priv;
1544  ff_framesync_uninit(&lut3d->fs);
1545  av_freep(&lut3d->lut);
1546 }
1547 
1549  &lut3d_haldclut_options[COMMON_OPTIONS_OFFSET]);
1550 
1551 static const AVFilterPad haldclut_inputs[] = {
1552  {
1553  .name = "main",
1554  .type = AVMEDIA_TYPE_VIDEO,
1555  .config_props = config_input,
1556  },{
1557  .name = "clut",
1558  .type = AVMEDIA_TYPE_VIDEO,
1559  .config_props = config_clut,
1560  },
1561 };
1562 
1563 static const AVFilterPad haldclut_outputs[] = {
1564  {
1565  .name = "default",
1566  .type = AVMEDIA_TYPE_VIDEO,
1567  .config_props = config_output,
1568  },
1569 };
1570 
1571 const AVFilter ff_vf_haldclut = {
1572  .name = "haldclut",
1573  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
1574  .priv_size = sizeof(LUT3DContext),
1575  .preinit = haldclut_framesync_preinit,
1576  .init = haldclut_init,
1577  .uninit = haldclut_uninit,
1578  .activate = activate,
1579  FILTER_INPUTS(haldclut_inputs),
1580  FILTER_OUTPUTS(haldclut_outputs),
1582  .priv_class = &haldclut_class,
1584  .process_command = process_command,
1585 };
1586 #endif
1587 
1588 #endif /* CONFIG_LUT3D_FILTER || CONFIG_HALDCLUT_FILTER */
1589 
1590 #if CONFIG_LUT1D_FILTER
1591 
1592 enum interp_1d_mode {
1593  INTERPOLATE_1D_NEAREST,
1594  INTERPOLATE_1D_LINEAR,
1595  INTERPOLATE_1D_CUBIC,
1596  INTERPOLATE_1D_COSINE,
1597  INTERPOLATE_1D_SPLINE,
1598  NB_INTERP_1D_MODE
1599 };
1600 
1601 #define MAX_1D_LEVEL 65536
1602 
1603 typedef struct LUT1DContext {
1604  const AVClass *class;
1605  char *file;
1606  int interpolation; ///<interp_1d_mode
1607  struct rgbvec scale;
1608  uint8_t rgba_map[4];
1609  int step;
1610  float lut[3][MAX_1D_LEVEL];
1611  int lutsize;
1613 } LUT1DContext;
1614 
1615 #undef OFFSET
1616 #define OFFSET(x) offsetof(LUT1DContext, x)
1617 
1618 static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
1619 {
1620  const float c = 1. / (size - 1);
1621  int i;
1622 
1623  lut1d->lutsize = size;
1624  for (i = 0; i < size; i++) {
1625  lut1d->lut[0][i] = i * c;
1626  lut1d->lut[1][i] = i * c;
1627  lut1d->lut[2][i] = i * c;
1628  }
1629 }
1630 
1631 static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f)
1632 {
1633  LUT1DContext *lut1d = ctx->priv;
1634  char line[MAX_LINE_SIZE];
1635  float in_min[3] = {0.0, 0.0, 0.0};
1636  float in_max[3] = {1.0, 1.0, 1.0};
1637  float out_min[3] = {0.0, 0.0, 0.0};
1638  float out_max[3] = {1.0, 1.0, 1.0};
1639  int inside_metadata = 0, size;
1640 
1642  if (strncmp(line, "CSPLUTV100", 10)) {
1643  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
1644  return AVERROR(EINVAL);
1645  }
1646 
1648  if (strncmp(line, "1D", 2)) {
1649  av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n");
1650  return AVERROR(EINVAL);
1651  }
1652 
1653  while (1) {
1655 
1656  if (!strncmp(line, "BEGIN METADATA", 14)) {
1657  inside_metadata = 1;
1658  continue;
1659  }
1660  if (!strncmp(line, "END METADATA", 12)) {
1661  inside_metadata = 0;
1662  continue;
1663  }
1664  if (inside_metadata == 0) {
1665  for (int i = 0; i < 3; i++) {
1666  int npoints = strtol(line, NULL, 0);
1667 
1668  if (npoints != 2) {
1669  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
1670  return AVERROR_PATCHWELCOME;
1671  }
1672 
1674  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
1675  return AVERROR_INVALIDDATA;
1677  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
1678  return AVERROR_INVALIDDATA;
1680  }
1681 
1682  size = strtol(line, NULL, 0);
1683 
1684  if (size < 2 || size > MAX_1D_LEVEL) {
1685  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1686  return AVERROR(EINVAL);
1687  }
1688 
1689  lut1d->lutsize = size;
1690 
1691  for (int i = 0; i < size; i++) {
1693  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1694  return AVERROR_INVALIDDATA;
1695  lut1d->lut[0][i] *= out_max[0] - out_min[0];
1696  lut1d->lut[1][i] *= out_max[1] - out_min[1];
1697  lut1d->lut[2][i] *= out_max[2] - out_min[2];
1698  }
1699 
1700  break;
1701  }
1702  }
1703 
1704  lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1705  lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1706  lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1707 
1708  return 0;
1709 }
1710 
1711 static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
1712 {
1713  LUT1DContext *lut1d = ctx->priv;
1714  char line[MAX_LINE_SIZE];
1715  float min[3] = {0.0, 0.0, 0.0};
1716  float max[3] = {1.0, 1.0, 1.0};
1717 
1718  while (fgets(line, sizeof(line), f)) {
1719  if (!strncmp(line, "LUT_1D_SIZE", 11)) {
1720  const int size = strtol(line + 12, NULL, 0);
1721  int i;
1722 
1723  if (size < 2 || size > MAX_1D_LEVEL) {
1724  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1725  return AVERROR(EINVAL);
1726  }
1727  lut1d->lutsize = size;
1728  for (i = 0; i < size; i++) {
1729  do {
1730 try_again:
1731  NEXT_LINE(0);
1732  if (!strncmp(line, "DOMAIN_", 7)) {
1733  float *vals = NULL;
1734  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
1735  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
1736  if (!vals)
1737  return AVERROR_INVALIDDATA;
1738  if (av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2) != 3)
1739  return AVERROR_INVALIDDATA;
1740  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
1741  min[0], min[1], min[2], max[0], max[1], max[2]);
1742  goto try_again;
1743  } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
1744  if (av_sscanf(line + 19, "%f %f", min, max) != 2)
1745  return AVERROR_INVALIDDATA;
1746  min[1] = min[2] = min[0];
1747  max[1] = max[2] = max[0];
1748  goto try_again;
1749  } else if (!strncmp(line, "TITLE", 5)) {
1750  goto try_again;
1751  }
1752  } while (skip_line(line));
1753  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1754  return AVERROR_INVALIDDATA;
1755  }
1756  break;
1757  }
1758  }
1759 
1760  lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
1761  lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
1762  lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
1763 
1764  return 0;
1765 }
1766 
1767 static const AVOption lut1d_options[] = {
1768  { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = TFLAGS },
1769  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, TFLAGS, .unit = "interp_mode" },
1770  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0, TFLAGS, .unit = "interp_mode" },
1771  { "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0, TFLAGS, .unit = "interp_mode" },
1772  { "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0, TFLAGS, .unit = "interp_mode" },
1773  { "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0, TFLAGS, .unit = "interp_mode" },
1774  { "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0, TFLAGS, .unit = "interp_mode" },
1775  { NULL }
1776 };
1777 
1778 AVFILTER_DEFINE_CLASS(lut1d);
1779 
1780 static inline float interp_1d_nearest(const LUT1DContext *lut1d,
1781  int idx, const float s)
1782 {
1783  return lut1d->lut[idx][NEAR(s)];
1784 }
1785 
1786 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1787 
1788 static inline float interp_1d_linear(const LUT1DContext *lut1d,
1789  int idx, const float s)
1790 {
1791  const int prev = PREV(s);
1792  const int next = NEXT1D(s);
1793  const float d = s - prev;
1794  const float p = lut1d->lut[idx][prev];
1795  const float n = lut1d->lut[idx][next];
1796 
1797  return lerpf(p, n, d);
1798 }
1799 
1800 static inline float interp_1d_cosine(const LUT1DContext *lut1d,
1801  int idx, const float s)
1802 {
1803  const int prev = PREV(s);
1804  const int next = NEXT1D(s);
1805  const float d = s - prev;
1806  const float p = lut1d->lut[idx][prev];
1807  const float n = lut1d->lut[idx][next];
1808  const float m = (1.f - cosf(d * M_PI)) * .5f;
1809 
1810  return lerpf(p, n, m);
1811 }
1812 
1813 static inline float interp_1d_cubic(const LUT1DContext *lut1d,
1814  int idx, const float s)
1815 {
1816  const int prev = PREV(s);
1817  const int next = NEXT1D(s);
1818  const float mu = s - prev;
1819  float a0, a1, a2, a3, mu2;
1820 
1821  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1822  float y1 = lut1d->lut[idx][prev];
1823  float y2 = lut1d->lut[idx][next];
1824  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1825 
1826 
1827  mu2 = mu * mu;
1828  a0 = y3 - y2 - y0 + y1;
1829  a1 = y0 - y1 - a0;
1830  a2 = y2 - y0;
1831  a3 = y1;
1832 
1833  return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
1834 }
1835 
1836 static inline float interp_1d_spline(const LUT1DContext *lut1d,
1837  int idx, const float s)
1838 {
1839  const int prev = PREV(s);
1840  const int next = NEXT1D(s);
1841  const float x = s - prev;
1842  float c0, c1, c2, c3;
1843 
1844  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1845  float y1 = lut1d->lut[idx][prev];
1846  float y2 = lut1d->lut[idx][next];
1847  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1848 
1849  c0 = y1;
1850  c1 = .5f * (y2 - y0);
1851  c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1852  c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1853 
1854  return ((c3 * x + c2) * x + c1) * x + c0;
1855 }
1856 
1857 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1858 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1859  void *arg, int jobnr, \
1860  int nb_jobs) \
1861 { \
1862  int x, y; \
1863  const LUT1DContext *lut1d = ctx->priv; \
1864  const ThreadData *td = arg; \
1865  const AVFrame *in = td->in; \
1866  const AVFrame *out = td->out; \
1867  const int direct = out == in; \
1868  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1869  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1870  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1871  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1872  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1873  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1874  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1875  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1876  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1877  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1878  const float factor = (1 << depth) - 1; \
1879  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1880  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1881  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1882  \
1883  for (y = slice_start; y < slice_end; y++) { \
1884  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1885  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1886  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1887  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1888  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1889  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1890  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1891  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1892  for (x = 0; x < in->width; x++) { \
1893  float r = srcr[x] * scale_r; \
1894  float g = srcg[x] * scale_g; \
1895  float b = srcb[x] * scale_b; \
1896  r = interp_1d_##name(lut1d, 0, r); \
1897  g = interp_1d_##name(lut1d, 1, g); \
1898  b = interp_1d_##name(lut1d, 2, b); \
1899  dstr[x] = av_clip_uintp2(r * factor, depth); \
1900  dstg[x] = av_clip_uintp2(g * factor, depth); \
1901  dstb[x] = av_clip_uintp2(b * factor, depth); \
1902  if (!direct && in->linesize[3]) \
1903  dsta[x] = srca[x]; \
1904  } \
1905  grow += out->linesize[0]; \
1906  brow += out->linesize[1]; \
1907  rrow += out->linesize[2]; \
1908  arow += out->linesize[3]; \
1909  srcgrow += in->linesize[0]; \
1910  srcbrow += in->linesize[1]; \
1911  srcrrow += in->linesize[2]; \
1912  srcarow += in->linesize[3]; \
1913  } \
1914  return 0; \
1915 }
1916 
1917 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1918 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8)
1919 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1920 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1921 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1922 
1923 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1924 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9)
1925 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1926 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1927 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1928 
1929 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1930 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10)
1931 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1932 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1933 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1934 
1935 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1936 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12)
1937 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1938 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1939 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1940 
1941 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1942 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14)
1943 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1944 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1945 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1946 
1947 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1948 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16)
1949 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1950 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1951 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1952 
1953 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
1954 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
1955  void *arg, int jobnr, \
1956  int nb_jobs) \
1957 { \
1958  int x, y; \
1959  const LUT1DContext *lut1d = ctx->priv; \
1960  const ThreadData *td = arg; \
1961  const AVFrame *in = td->in; \
1962  const AVFrame *out = td->out; \
1963  const int direct = out == in; \
1964  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1965  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1966  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1967  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1968  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1969  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1970  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1971  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1972  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1973  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1974  const float lutsize = lut1d->lutsize - 1; \
1975  const float scale_r = lut1d->scale.r * lutsize; \
1976  const float scale_g = lut1d->scale.g * lutsize; \
1977  const float scale_b = lut1d->scale.b * lutsize; \
1978  \
1979  for (y = slice_start; y < slice_end; y++) { \
1980  float *dstg = (float *)grow; \
1981  float *dstb = (float *)brow; \
1982  float *dstr = (float *)rrow; \
1983  float *dsta = (float *)arow; \
1984  const float *srcg = (const float *)srcgrow; \
1985  const float *srcb = (const float *)srcbrow; \
1986  const float *srcr = (const float *)srcrrow; \
1987  const float *srca = (const float *)srcarow; \
1988  for (x = 0; x < in->width; x++) { \
1989  float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
1990  float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
1991  float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
1992  r = interp_1d_##name(lut1d, 0, r); \
1993  g = interp_1d_##name(lut1d, 1, g); \
1994  b = interp_1d_##name(lut1d, 2, b); \
1995  dstr[x] = r; \
1996  dstg[x] = g; \
1997  dstb[x] = b; \
1998  if (!direct && in->linesize[3]) \
1999  dsta[x] = srca[x]; \
2000  } \
2001  grow += out->linesize[0]; \
2002  brow += out->linesize[1]; \
2003  rrow += out->linesize[2]; \
2004  arow += out->linesize[3]; \
2005  srcgrow += in->linesize[0]; \
2006  srcbrow += in->linesize[1]; \
2007  srcrrow += in->linesize[2]; \
2008  srcarow += in->linesize[3]; \
2009  } \
2010  return 0; \
2011 }
2012 
2013 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2014 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear, 32)
2015 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
2016 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
2017 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
2018 
2019 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
2020 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
2021  int jobnr, int nb_jobs) \
2022 { \
2023  int x, y; \
2024  const LUT1DContext *lut1d = ctx->priv; \
2025  const ThreadData *td = arg; \
2026  const AVFrame *in = td->in; \
2027  const AVFrame *out = td->out; \
2028  const int direct = out == in; \
2029  const int step = lut1d->step; \
2030  const uint8_t r = lut1d->rgba_map[R]; \
2031  const uint8_t g = lut1d->rgba_map[G]; \
2032  const uint8_t b = lut1d->rgba_map[B]; \
2033  const uint8_t a = lut1d->rgba_map[A]; \
2034  const int slice_start = (in->height * jobnr ) / nb_jobs; \
2035  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2036  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
2037  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
2038  const float factor = (1 << nbits) - 1; \
2039  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
2040  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
2041  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
2042  \
2043  for (y = slice_start; y < slice_end; y++) { \
2044  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
2045  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
2046  for (x = 0; x < in->width * step; x += step) { \
2047  float rr = src[x + r] * scale_r; \
2048  float gg = src[x + g] * scale_g; \
2049  float bb = src[x + b] * scale_b; \
2050  rr = interp_1d_##name(lut1d, 0, rr); \
2051  gg = interp_1d_##name(lut1d, 1, gg); \
2052  bb = interp_1d_##name(lut1d, 2, bb); \
2053  dst[x + r] = av_clip_uint##nbits(rr * factor); \
2054  dst[x + g] = av_clip_uint##nbits(gg * factor); \
2055  dst[x + b] = av_clip_uint##nbits(bb * factor); \
2056  if (!direct && step == 4) \
2057  dst[x + a] = src[x + a]; \
2058  } \
2059  dstrow += out->linesize[0]; \
2060  srcrow += in ->linesize[0]; \
2061  } \
2062  return 0; \
2063 }
2064 
2065 DEFINE_INTERP_FUNC_1D(nearest, 8)
2066 DEFINE_INTERP_FUNC_1D(linear, 8)
2067 DEFINE_INTERP_FUNC_1D(cosine, 8)
2068 DEFINE_INTERP_FUNC_1D(cubic, 8)
2069 DEFINE_INTERP_FUNC_1D(spline, 8)
2070 
2071 DEFINE_INTERP_FUNC_1D(nearest, 16)
2072 DEFINE_INTERP_FUNC_1D(linear, 16)
2073 DEFINE_INTERP_FUNC_1D(cosine, 16)
2074 DEFINE_INTERP_FUNC_1D(cubic, 16)
2075 DEFINE_INTERP_FUNC_1D(spline, 16)
2076 
2077 static int config_input_1d(AVFilterLink *inlink)
2078 {
2079  int depth, is16bit, isfloat, planar;
2080  LUT1DContext *lut1d = inlink->dst->priv;
2082 
2083  depth = desc->comp[0].depth;
2084  is16bit = desc->comp[0].depth > 8;
2085  planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
2086  isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
2087  ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
2088  lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
2089 
2090 #define SET_FUNC_1D(name) do { \
2091  if (planar && !isfloat) { \
2092  switch (depth) { \
2093  case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2094  case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2095  case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2096  case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2097  case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2098  case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2099  } \
2100  } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2101  } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2102  } else { lut1d->interp = interp_1d_8_##name; } \
2103 } while (0)
2104 
2105  switch (lut1d->interpolation) {
2106  case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break;
2107  case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break;
2108  case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break;
2109  case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break;
2110  case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break;
2111  default:
2112  av_assert0(0);
2113  }
2114 
2115  return 0;
2116 }
2117 
2118 static av_cold int lut1d_init(AVFilterContext *ctx)
2119 {
2120  int ret;
2121  FILE *f;
2122  const char *ext;
2123  LUT1DContext *lut1d = ctx->priv;
2124 
2125  lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2126 
2127  if (!lut1d->file) {
2128  set_identity_matrix_1d(lut1d, 32);
2129  return 0;
2130  }
2131 
2132  f = avpriv_fopen_utf8(lut1d->file, "r");
2133  if (!f) {
2134  ret = AVERROR(errno);
2135  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
2136  return ret;
2137  }
2138 
2139  ext = strrchr(lut1d->file, '.');
2140  if (!ext) {
2141  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
2143  goto end;
2144  }
2145  ext++;
2146 
2147  if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
2148  ret = parse_cube_1d(ctx, f);
2149  } else if (!av_strcasecmp(ext, "csp")) {
2150  ret = parse_cinespace_1d(ctx, f);
2151  } else {
2152  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
2153  ret = AVERROR(EINVAL);
2154  }
2155 
2156  if (!ret && !lut1d->lutsize) {
2157  av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
2159  }
2160 
2161 end:
2162  fclose(f);
2163  return ret;
2164 }
2165 
2166 static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
2167 {
2168  AVFilterContext *ctx = inlink->dst;
2169  LUT1DContext *lut1d = ctx->priv;
2170  AVFilterLink *outlink = inlink->dst->outputs[0];
2171  AVFrame *out;
2172  ThreadData td;
2173 
2174  if (av_frame_is_writable(in)) {
2175  out = in;
2176  } else {
2177  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
2178  if (!out) {
2179  av_frame_free(&in);
2180  return NULL;
2181  }
2182  av_frame_copy_props(out, in);
2183  }
2184 
2185  td.in = in;
2186  td.out = out;
2187  ff_filter_execute(ctx, lut1d->interp, &td, NULL,
2188  FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
2189 
2190  if (out != in)
2191  av_frame_free(&in);
2192 
2193  return out;
2194 }
2195 
2196 static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
2197 {
2198  AVFilterLink *outlink = inlink->dst->outputs[0];
2199  AVFrame *out = apply_1d_lut(inlink, in);
2200  if (!out)
2201  return AVERROR(ENOMEM);
2202  return ff_filter_frame(outlink, out);
2203 }
2204 
2205 static int lut1d_process_command(AVFilterContext *ctx, const char *cmd, const char *args,
2206  char *res, int res_len, int flags)
2207 {
2208  LUT1DContext *lut1d = ctx->priv;
2209  int ret;
2210 
2211  ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
2212  if (ret < 0)
2213  return ret;
2214 
2215  ret = lut1d_init(ctx);
2216  if (ret < 0) {
2217  set_identity_matrix_1d(lut1d, 32);
2218  return ret;
2219  }
2220  return config_input_1d(ctx->inputs[0]);
2221 }
2222 
2223 static const AVFilterPad lut1d_inputs[] = {
2224  {
2225  .name = "default",
2226  .type = AVMEDIA_TYPE_VIDEO,
2227  .filter_frame = filter_frame_1d,
2228  .config_props = config_input_1d,
2229  },
2230 };
2231 
2232 const AVFilter ff_vf_lut1d = {
2233  .name = "lut1d",
2234  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
2235  .priv_size = sizeof(LUT1DContext),
2236  .init = lut1d_init,
2237  FILTER_INPUTS(lut1d_inputs),
2240  .priv_class = &lut1d_class,
2242  .process_command = lut1d_process_command,
2243 };
2244 #endif
ff_get_video_buffer
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:116
COMMON_OPTIONS
#define COMMON_OPTIONS
Definition: vf_lut3d.c:50
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:525
DEFINE_INTERP_FUNC_PLANAR_FLOAT
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
Definition: vf_lut3d.c:419
MAX_LINE_SIZE
#define MAX_LINE_SIZE
Definition: vf_lut3d.c:547
lerpf
static float lerpf(float v0, float v1, float f)
Definition: vf_lut3d.c:83
ff_framesync_configure
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:137
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:215
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
level
uint8_t level
Definition: svq3.c:205
mix
static int mix(int c0, int c1)
Definition: 4xm.c:716
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
parse_m3d
static int parse_m3d(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:768
FILTER_PIXFMTS_ARRAY
#define FILTER_PIXFMTS_ARRAY(array)
Definition: filters.h:242
ff_framesync_uninit
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:301
out
FILE * out
Definition: movenc.c:55
rgbvec
Definition: lut3d.h:39
NEXT_FLOAT_OR_GOTO
#define NEXT_FLOAT_OR_GOTO(value, label)
Definition: vf_lut3d.c:865
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1062
avfilter_action_func
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times,...
Definition: avfilter.h:764
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3170
apply_prelut
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
Definition: vf_lut3d.c:307
lerp
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
Definition: vf_lut3d.c:88
parse_dat
static int parse_dat(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:640
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
av_strcasecmp
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
Definition: avstring.c:207
AV_PIX_FMT_FLAG_FLOAT
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:158
av_isspace
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
Definition: avstring.h:218
LUT3DContext::lutsize2
int lutsize2
Definition: lut3d.h:60
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:162
AVFILTER_DEFINE_CLASS_EXT
#define AVFILTER_DEFINE_CLASS_EXT(name, desc, options)
Definition: filters.h:265
LUT3DContext::scale
struct rgbvec scale
Definition: lut3d.h:61
FILTER_INPUTS
#define FILTER_INPUTS(array)
Definition: filters.h:262
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:389
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
w
uint8_t w
Definition: llviddspenc.c:38
av_intfloat32::i
uint32_t i
Definition: intfloat.h:28
AVOption
AVOption.
Definition: opt.h:429
skip_line
static int skip_line(const char *p)
Definition: vf_lut3d.c:549
b
#define b
Definition: input.c:41
lut3d.h
data
const char data[16]
Definition: mxf.c:149
linear
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
Definition: interplayacm.c:135
float.h
interp_tetrahedral
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
Definition: vf_lut3d.c:238
AV_PIX_FMT_BGR24
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:76
AV_PIX_FMT_BGRA
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:102
preinit
static av_cold int preinit(AVFilterContext *ctx)
Definition: af_aresample.c:48
max
#define max(a, b)
Definition: cuda_runtime.h:33
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
interp_prism
static struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s)
Definition: vf_lut3d.c:189
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:205
c1
static const uint64_t c1
Definition: murmur3.c:52
FFFrameSync
Frame sync structure.
Definition: framesync.h:168
ThreadData::out
AVFrame * out
Definition: af_adeclick.c:526
parse_cube
static int parse_cube(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:675
intfloat.h
video.h
ThreadData::in
AVFrame * in
Definition: af_adecorrelate.c:155
ff_vf_lut3d
const AVFilter ff_vf_lut3d
MANTISSA_MASK
#define MANTISSA_MASK
Definition: vf_lut3d.c:60
SIGN_MASK
#define SIGN_MASK
Definition: vf_lut3d.c:61
LUT3DContext
Definition: lut3d.h:56
INTERPOLATE_PYRAMID
@ INTERPOLATE_PYRAMID
Definition: lut3d.h:34
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
Lut3DPreLut::lut
float * lut[3]
Definition: lut3d.h:53
av_pix_fmt_count_planes
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3210
parse_3dl
static int parse_3dl(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:733
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:520
apply_lut
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
Definition: exr.c:290
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:212
cosf
#define cosf(x)
Definition: libm.h:78
interp
interp
Definition: vf_curves.c:62
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:518
val
static double val(void *priv, double ch)
Definition: aeval.c:77
a2
static double a2(void *priv, double x, double y)
Definition: vf_xfade.c:2030
planar
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
Definition: audioconvert.c:56
interp_trilinear
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
Definition: vf_lut3d.c:113
AVFilterPad
A filter pad used for either input or output.
Definition: filters.h:38
pix_fmts
static enum AVPixelFormat pix_fmts[]
Definition: vf_lut3d.c:1097
SET_COLOR
#define SET_COLOR(id)
INTERPOLATE_NEAREST
@ INTERPOLATE_NEAREST
Definition: lut3d.h:31
avassert.h
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:209
LUT3DContext::file
char * file
Definition: lut3d.h:63
av_cold
#define av_cold
Definition: attributes.h:90
Lut3DPreLut::scale
float scale[3]
Definition: lut3d.h:52
ff_video_default_filterpad
const AVFilterPad ff_video_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_VIDEO.
Definition: video.c:37
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:522
float
float
Definition: af_crystalizer.c:122
OFFSET
#define OFFSET(x)
Definition: vf_lut3d.c:47
s
#define s(width, name)
Definition: cbs_vp9.c:198
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:523
g
const char * g
Definition: vf_curves.c:128
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
filters.h
INTERPOLATE_PRISM
@ INTERPOLATE_PRISM
Definition: lut3d.h:35
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:230
ctx
AVFormatContext * ctx
Definition: movenc.c:49
fget_next_word
static char * fget_next_word(char *dst, int max, FILE *f)
Definition: vf_lut3d.c:556
DEFINE_INTERP_FUNC
#define DEFINE_INTERP_FUNC(name, nbits)
Definition: vf_lut3d.c:486
Lut3DPreLut::size
int size
Definition: lut3d.h:49
FILTER_OUTPUTS
#define FILTER_OUTPUTS(array)
Definition: filters.h:263
file_open.h
AV_PIX_FMT_RGBA
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:100
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:521
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:492
av_sscanf
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
Definition: avsscanf.c:961
prelut_interp_1d_linear
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
Definition: vf_lut3d.c:293
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
rgbvec::r
float r
Definition: lut3d.h:40
AV_PIX_FMT_BGR48
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:493
NULL
#define NULL
Definition: coverity.c:32
AVERROR_PATCHWELCOME
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:64
av_frame_copy_props
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:713
config_input
static int config_input(AVFilterLink *inlink)
Definition: af_acontrast.c:121
a3
static double a3(void *priv, double x, double y)
Definition: vf_xfade.c:2031
fs
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:200
activate
filter_frame For filters that do not use the activate() callback
FRAMESYNC_DEFINE_CLASS_EXT
#define FRAMESYNC_DEFINE_CLASS_EXT(name, context, field, options)
Definition: framesync.h:348
AV_PIX_FMT_BGR0
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:265
av_intfloat32
Definition: intfloat.h:27
filter_frame
static int filter_frame(DBEDecodeContext *s, AVFrame *frame)
Definition: dolby_e.c:1059
av_clipf
av_clipf
Definition: af_crystalizer.c:122
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:517
AVFILTER_DEFINE_CLASS
#define AVFILTER_DEFINE_CLASS(fname)
Definition: filters.h:273
AV_PIX_FMT_ABGR
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:101
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
MAX_LEVEL
#define MAX_LEVEL
Definition: rl.h:36
f
f
Definition: af_crystalizer.c:122
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts.c:368
AV_PIX_FMT_RGB24
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:75
ff_framesync_init_dualinput
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:372
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:94
master
const char * master
Definition: vf_curves.c:130
av_get_padded_bits_per_pixel
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
Definition: pixdesc.c:3135
dst
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
Definition: dsp.h:83
process_command
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: af_acrusher.c:307
config_output
static int config_output(AVFilterLink *outlink)
Definition: af_aap.c:190
av_err2str
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:122
AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:532
AV_PIX_FMT_RGB48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:488
size
int size
Definition: twinvq_data.h:10344
Lut3DPreLut::min
float min[3]
Definition: lut3d.h:50
av_frame_is_writable
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:649
ff_filter_process_command
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
Definition: avfilter.c:901
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
EXPONENT_MASK
#define EXPONENT_MASK
Definition: vf_lut3d.c:59
a0
static double a0(void *priv, double x, double y)
Definition: vf_xfade.c:2028
line
Definition: graph2dot.c:48
AV_PIX_FMT_RGB0
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:263
set_identity_matrix
static int set_identity_matrix(AVFilterContext *ctx, int size)
Definition: vf_lut3d.c:1072
PREV
#define PREV(x)
Definition: vf_lut3d.c:97
interpolation
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
Definition: af_adeclick.c:389
M_PI
#define M_PI
Definition: mathematics.h:67
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:220
PRELUT_SIZE
#define PRELUT_SIZE
Definition: lut3d.h:46
AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:182
AV_PIX_FMT_ARGB
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:99
uninit
static void uninit(AVBSFContext *ctx)
Definition: pcm_rechunk.c:68
AV_PIX_FMT_BGRA64
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:497
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
LUT3DContext::interp
avfilter_action_func * interp
Definition: lut3d.h:66
DEFINE_INTERP_FUNC_PLANAR
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
Definition: vf_lut3d.c:321
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:519
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:31
ff_filter_get_nb_threads
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:841
ThreadData
Used for passing data between threads.
Definition: dsddec.c:71
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
INTERPOLATE_TETRAHEDRAL
@ INTERPOLATE_TETRAHEDRAL
Definition: lut3d.h:33
Lut3DPreLut::max
float max[3]
Definition: lut3d.h:51
interp_pyramid
static struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s)
Definition: vf_lut3d.c:139
AVFilterPad::name
const char * name
Pad name.
Definition: filters.h:44
avpriv_fopen_utf8
FILE * avpriv_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
Definition: file_open.c:161
parse_cinespace
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:875
Lut3DPreLut
Definition: lut3d.h:48
AVFilter
Filter definition.
Definition: avfilter.h:201
sanitizef
static float sanitizef(float f)
Definition: vf_lut3d.c:63
ret
ret
Definition: filter_design.txt:187
AV_PIX_FMT_0BGR
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:264
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
allocate_3dlut
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
Definition: vf_lut3d.c:605
NEXT_LINE_OR_GOTO
#define NEXT_LINE_OR_GOTO(loop_cond, label)
Definition: vf_lut3d.c:597
rgbvec::g
float g
Definition: lut3d.h:40
ff_vf_haldclut
const AVFilter ff_vf_haldclut
NEXT
#define NEXT(x)
Definition: vf_lut3d.c:98
LUT3DContext::prelut
Lut3DPreLut prelut
Definition: lut3d.h:67
c2
static const uint64_t c2
Definition: murmur3.c:53
ff_filter_execute
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
Definition: avfilter.c:1667
rgbvec::b
float b
Definition: lut3d.h:40
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:72
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:533
interp_nearest
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
Definition: vf_lut3d.c:103
LUT3DContext::step
int step
Definition: lut3d.h:65
AV_PIX_FMT_FLAG_PLANAR
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:132
TFLAGS
#define TFLAGS
Definition: vf_lut3d.c:49
AVFilterContext
An instance of a filter.
Definition: avfilter.h:457
NEXT_LINE
#define NEXT_LINE(loop_cond)
Definition: vf_lut3d.c:590
av_intfloat32::f
float f
Definition: intfloat.h:29
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:165
AVFILTER_FLAG_SLICE_THREADS
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:152
desc
const char * desc
Definition: libsvtav1.c:79
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
mem.h
FLAGS
#define FLAGS
Definition: vf_lut3d.c:48
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
scale
static void scale(int *out, const int *in, const int w, const int h, const int shift)
Definition: intra.c:291
INTERPOLATE_TRILINEAR
@ INTERPOLATE_TRILINEAR
Definition: lut3d.h:32
NEAR
#define NEAR(x)
Definition: vf_lut3d.c:96
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
ff_fill_rgba_map
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:79
ff_lut3d_init_x86
void ff_lut3d_init_x86(LUT3DContext *s, const AVPixFmtDescriptor *desc)
Definition: vf_lut3d_init.c:58
AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:190
flags
#define flags(name, subs,...)
Definition: cbs_av1.c:482
AV_PIX_FMT_0RGB
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:262
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
a1
static double a1(void *priv, double x, double y)
Definition: vf_xfade.c:2029
h
h
Definition: vp9dsp_template.c:2070
ff_framesync_activate
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
Definition: framesync.c:352
ff_vf_lut1d
const AVFilter ff_vf_lut1d
avstring.h
ff_framesync_dualinput_get
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Definition: framesync.c:390
AV_OPT_TYPE_STRING
@ AV_OPT_TYPE_STRING
Underlying C type is a uint8_t* that is either NULL or points to a C string allocated with the av_mal...
Definition: opt.h:276
drawutils.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
LUT3DContext::lutsize
int lutsize
Definition: lut3d.h:59
LUT3DContext::lut
struct rgbvec * lut
Definition: lut3d.h:58
LUT3DContext::interpolation
int interpolation
interp_mode
Definition: lut3d.h:62
LUT3DContext::rgba_map
uint8_t rgba_map[4]
Definition: lut3d.h:64
min
float min
Definition: vorbis_enc_data.h:429
nearest_sample_index
static int nearest_sample_index(float *data, float x, int low, int hi)
Definition: vf_lut3d.c:837