Go to the documentation of this file.
65 #define OFFSET(x) offsetof(AudioLimiterContext, x)
66 #define A AV_OPT_FLAG_AUDIO_PARAM
67 #define F AV_OPT_FLAG_FILTERING_PARAM
91 s->asc_coeff = pow(0.5,
s->asc_coeff - 0.5) * 2 * -1;
97 double peak,
double limit,
double patt,
int asc)
101 if (asc &&
s->auto_release &&
s->asc_c > 0) {
102 double a_att = limit / (
s->asc_coeff *
s->asc) * (
double)
s->asc_c;
120 const double *
src = (
const double *)
in->data[0];
122 const int buffer_size =
s->buffer_size;
123 double *dst, *
buffer =
s->buffer;
124 const double release =
s->release;
125 const double limit =
s->limit;
126 double *nextdelta =
s->nextdelta;
127 double level =
s->auto_level ? 1 / limit : 1;
128 const double level_out =
s->level_out;
129 const double level_in =
s->level_in;
130 int *nextpos =
s->nextpos;
145 dst = (
double *)
out->data[0];
147 for (n = 0; n <
in->nb_samples; n++) {
157 if (
s->auto_release && peak > limit) {
165 peak, limit,
patt, 0);
169 if (delta < s->
delta) {
173 nextdelta[0] = rdelta;
177 for (
i =
s->nextiter; i < s->nextiter +
s->nextlen;
i++) {
178 int j =
i % buffer_size;
179 double ppeak, pdelta;
183 pdelta = (limit / peak - limit / ppeak) / (((buffer_size - nextpos[j] +
s->pos) % buffer_size) /
channels);
184 if (pdelta < nextdelta[j]) {
185 nextdelta[j] = pdelta;
191 s->nextlen =
i -
s->nextiter + 1;
192 nextpos[(
s->nextiter +
s->nextlen) % buffer_size] =
s->pos;
193 nextdelta[(
s->nextiter +
s->nextlen) % buffer_size] = rdelta;
194 nextpos[(
s->nextiter +
s->nextlen + 1) % buffer_size] = -1;
200 buf = &
s->buffer[(
s->pos +
channels) % buffer_size];
208 if (
s->pos ==
s->asc_pos && !
s->asc_changed)
211 if (
s->auto_release &&
s->asc_pos == -1 && peak > limit) {
219 dst[
c] = buf[
c] *
s->att;
221 if ((
s->pos +
channels) % buffer_size == nextpos[
s->nextiter]) {
222 if (
s->auto_release) {
224 peak, limit,
s->att, 1);
225 if (
s->nextlen > 1) {
226 int pnextpos = nextpos[(
s->nextiter + 1) % buffer_size];
230 double pdelta = (limit / ppeak -
s->att) /
231 (((buffer_size + pnextpos -
234 if (pdelta < s->
delta)
238 s->delta = nextdelta[
s->nextiter];
239 s->att = limit / peak;
243 nextpos[
s->nextiter] = -1;
244 s->nextiter = (
s->nextiter + 1) % buffer_size;
256 s->att = 0.0000000000001;
257 s->delta = (1.0 -
s->att) / (
inlink->sample_rate * release);
260 if (
s->att != 1. && (1. -
s->att) < 0.0000000000001)
263 if (
s->delta != 0. &&
fabs(
s->delta) < 0.00000000000001)
316 obuffer_size =
inlink->sample_rate *
inlink->channels * 100 / 1000. +
inlink->channels;
317 if (obuffer_size < inlink->
channels)
320 s->buffer =
av_calloc(obuffer_size,
sizeof(*
s->buffer));
321 s->nextdelta =
av_calloc(obuffer_size,
sizeof(*
s->nextdelta));
323 if (!
s->buffer || !
s->nextdelta || !
s->nextpos)
326 memset(
s->nextpos, -1, obuffer_size *
sizeof(*
s->nextpos));
327 s->buffer_size =
inlink->sample_rate *
s->attack *
inlink->channels;
328 s->buffer_size -=
s->buffer_size %
inlink->channels;
330 if (
s->buffer_size <= 0) {
369 .priv_class = &alimiter_class,
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
static const AVOption alimiter_options[]
A list of supported channel layouts.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static av_cold int init(AVFilterContext *ctx)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static const AVFilterPad alimiter_inputs[]
static const AVFilterPad alimiter_outputs[]
const char * name
Filter name.
A link between two filters.
static int query_formats(AVFilterContext *ctx)
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static av_cold void uninit(AVFilterContext *ctx)
static const AVFilterPad outputs[]
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Describe the class of an AVClass context structure.
static __device__ float fabs(float a)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define av_malloc_array(a, b)
AVSampleFormat
Audio sample formats.
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
static const int8_t patt[4]
static double get_rdelta(AudioLimiterContext *s, double release, int sample_rate, double peak, double limit, double patt, int asc)
AVFILTER_DEFINE_CLASS(alimiter)
static int config_input(AVFilterLink *inlink)
@ AV_SAMPLE_FMT_DBL
double