Go to the documentation of this file.
34 #include "config_components.h"
81 #define QUANT_BIAS_SHIFT 8
83 #define QMAT_SHIFT_MMX 16
90 int16_t *
block,
int n,
110 uint16_t (*qmat16)[2][64],
111 const uint16_t *quant_matrix,
112 int bias,
int qmin,
int qmax,
int intra)
123 else qscale2 =
qscale << 1;
130 for (
i = 0;
i < 64;
i++) {
131 const int j =
s->c.idsp.idct_permutation[
i];
142 for (
i = 0;
i < 64;
i++) {
143 const int j =
s->c.idsp.idct_permutation[
i];
154 for (
i = 0;
i < 64;
i++) {
155 const int j =
s->c.idsp.idct_permutation[
i];
170 if (qmat16[
qscale][0][
i] == 0 ||
171 qmat16[
qscale][0][
i] == 128 * 256)
172 qmat16[
qscale][0][
i] = 128 * 256 - 1;
179 for (
i = intra;
i < 64;
i++) {
191 "Warning, QMAT_SHIFT is larger than %d, overflows possible\n",
200 if (
s->c.q_scale_type == 1 && 0) {
202 int bestdiff=INT_MAX;
210 if (
diff < bestdiff) {
232 for (
i = 0;
i < 64;
i++) {
244 int8_t *
const qscale_table =
s->c.cur_pic.qscale_table;
246 for (
int i = 0;
i <
s->c.mb_num;
i++) {
247 unsigned int lam =
s->lambda_table[
s->c.mb_index2xy[
i]];
249 qscale_table[
s->c.mb_index2xy[
i]] =
av_clip(qp,
s->c.avctx->qmin,
257 #define COPY(a) dst->a = src->a
264 COPY(
c.frame_pred_frame_dct);
265 COPY(
c.progressive_frame);
266 COPY(partitioned_frame);
272 for (
int i = -16;
i < 16;
i++)
293 if (!
s->c.y_dc_scale_table) {
294 s->c.y_dc_scale_table =
307 if (
s->c.avctx->trellis)
350 if (!me_cmp[0] || !me_cmp[4])
352 s->ildct_cmp[0] = me_cmp[0];
353 s->ildct_cmp[1] = me_cmp[4];
358 s->sse_cmp[0] = mecc.
sse[0];
359 s->sse_cmp[1] = mecc.
sse[1];
360 s->sad_cmp[0] = mecc.
sad[0];
361 s->sad_cmp[1] = mecc.
sad[1];
363 s->n_sse_cmp[0] = mecc.
nsse[0];
364 s->n_sse_cmp[1] = mecc.
nsse[1];
366 s->n_sse_cmp[0] = mecc.
sse[0];
367 s->n_sse_cmp[1] = mecc.
sse[1];
373 #define ALLOCZ_ARRAYS(p, mult, numb) ((p) = av_calloc(numb, mult * sizeof(*(p))))
386 s->q_chroma_intra_matrix =
s->q_intra_matrix + 32;
387 s->q_chroma_intra_matrix16 =
s->q_intra_matrix16 + 32;
393 s->q_chroma_intra_matrix =
s->q_intra_matrix;
394 s->q_chroma_intra_matrix16 =
s->q_intra_matrix16;
397 s->q_inter_matrix =
s->q_intra_matrix + 32;
398 s->q_inter_matrix16 =
s->q_intra_matrix16 + 32;
419 for (
int i = 0;
i < 64;
i++) {
420 int j =
s->c.idsp.idct_permutation[
i];
432 s->c.intra_matrix,
s->intra_quant_bias,
avctx->
qmin,
434 if (
s->q_inter_matrix)
436 s->c.inter_matrix,
s->inter_quant_bias,
avctx->
qmin,
446 int16_t (*mv_table)[2];
449 unsigned mb_array_size =
s->c.mb_stride *
s->c.mb_height;
450 s->mb_type =
av_calloc(mb_array_size, 3 *
sizeof(*
s->mb_type) +
sizeof(*
s->mb_mean));
453 s->mc_mb_var =
s->mb_type + mb_array_size;
454 s->mb_var =
s->mc_mb_var + mb_array_size;
455 s->mb_mean = (uint8_t*)(
s->mb_var + mb_array_size);
460 unsigned mv_table_size = (
s->c.mb_height + 2) *
s->c.mb_stride + 1;
461 unsigned nb_mv_tables = 1 + 5 * has_b_frames;
464 nb_mv_tables += 8 * has_b_frames;
465 s->p_field_select_table[0] =
av_calloc(mv_table_size, 2 * (2 + 4 * has_b_frames));
466 if (!
s->p_field_select_table[0])
468 s->p_field_select_table[1] =
s->p_field_select_table[0] + 2 * mv_table_size;
471 mv_table =
av_calloc(mv_table_size, nb_mv_tables *
sizeof(*mv_table));
475 mv_table +=
s->c.mb_stride + 1;
477 s->p_mv_table = mv_table;
479 s->b_forw_mv_table = mv_table += mv_table_size;
480 s->b_back_mv_table = mv_table += mv_table_size;
481 s->b_bidir_forw_mv_table = mv_table += mv_table_size;
482 s->b_bidir_back_mv_table = mv_table += mv_table_size;
483 s->b_direct_mv_table = mv_table += mv_table_size;
485 if (
s->p_field_select_table[1]) {
487 for (
int j = 0; j < 2; j++) {
488 for (
int k = 0; k < 2; k++) {
489 for (
int l = 0; l < 2; l++)
490 s->b_field_mv_table[j][k][l] = mv_table += mv_table_size;
491 s->b_field_select_table[j][k] =
field_select += 2 * mv_table_size;
511 DCT_ERROR_SIZE =
FFALIGN(2 *
sizeof(*
s->dct_error_sum),
ALIGN),
514 "Need checks for potential overflow.");
515 unsigned nb_slices =
s->c.slice_context_count;
528 const int y_size =
s->c.b8_stride * (2 *
s->c.mb_height + 1);
529 const int c_size =
s->c.mb_stride * (
s->c.mb_height + 1);
530 const int yc_size = y_size + 2 * c_size;
533 for (
unsigned i = 0;
i < nb_slices; ++
i) {
536 s2->
block = s2->blocks[0];
588 "keyframe interval too large!, reducing it from %d to %d\n",
600 "max b frames must be 0 or positive for mpegvideo based encoders\n");
611 s->rtp_mode = !!
s->rtp_payload_size;
615 if (
s->c.intra_dc_precision < 0) {
616 s->c.intra_dc_precision += 8;
617 }
else if (
s->c.intra_dc_precision >= 8)
618 s->c.intra_dc_precision -= 8;
620 if (
s->c.intra_dc_precision < 0) {
622 "intra dc precision must be positive, note some applications use"
623 " 0 and some 8 as base meaning 8bit, the value must not be smaller than that\n");
687 "Warning min_rate > 0 but min_rate != max_rate isn't recommended!\n");
704 "impossible bitrate constraints, this will fail\n");
720 if (nbt <= INT_MAX) {
735 "OBMC is only supported with simple mb decision\n");
750 "Invalid pixel aspect ratio %i/%i, limit is 255/255 reducing\n",
812 "closed gop with scene change detection are not supported yet, "
813 "set threshold to 1000000000\n");
821 "low delay forcing is only available for mpeg2, "
822 "set strict_std_compliance to 'unofficial' or lower in order to allow it\n");
827 "B-frames cannot be used with low delay\n");
840 "notice: b_frame_strategy only affects the first pass\n");
855 s->inter_quant_bias = 0;
857 s->intra_quant_bias = 0;
870 #if CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER
881 #if CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER
903 if (!CONFIG_H263_ENCODER)
906 s->c.width,
s->c.height) == 8) {
908 "The specified picture size of %dx%d is not valid for "
909 "the H.263 codec.\nValid sizes are 128x96, 176x144, "
910 "352x288, 704x576, and 1408x1152. "
911 "Try H.263+.\n",
s->c.width,
s->c.height);
922 s->modified_quant =
s->c.h263_aic;
924 s->me.unrestricted_mv =
s->c.obmc ||
s->loop_filter ||
s->umvplus;
925 s->flipflop_rounding = 1;
934 s->me.unrestricted_mv = 1;
939 #if CONFIG_RV10_ENCODER
947 #if CONFIG_RV20_ENCODER
953 s->modified_quant = 1;
958 s->me.unrestricted_mv = 0;
964 s->me.unrestricted_mv = 1;
965 s->flipflop_rounding = 1;
972 s->me.unrestricted_mv = 1;
980 s->me.unrestricted_mv = 1;
982 s->flipflop_rounding = 1;
989 s->me.unrestricted_mv = 1;
991 s->flipflop_rounding = 1;
998 s->me.unrestricted_mv = 1;
1000 s->flipflop_rounding = 1;
1005 av_unreachable(
"List contains all codecs using ff_mpv_encode_init()");
1012 s->c.progressive_frame =
1015 s->c.alternate_scan);
1026 s->frame_reconstruction_bitfield = 0;
1058 if (CONFIG_H263_ENCODER &&
s->c.out_format ==
FMT_H263) {
1060 #if CONFIG_MSMPEG4ENC
1066 s->c.slice_ctx_size =
sizeof(*s);
1073 if (
s->c.slice_context_count > 1) {
1076 s->h263_slice_structured = 1;
1163 if (
s->c.block_last_index[
i] >= 0) {
1178 for (
int i = 0;
i < 6;
i++) {
1179 for (
int j = 0; j < 64; j++) {
1181 block[
i][
s->c.idsp.idct_permutation[j]]);
1187 if ((1 <<
s->c.pict_type) &
s->frame_reconstruction_bitfield) {
1188 uint8_t *dest_y =
s->c.dest[0], *dest_cb =
s->c.dest[1], *dest_cr =
s->c.dest[2];
1189 int dct_linesize, dct_offset;
1190 const int linesize =
s->c.cur_pic.linesize[0];
1192 const int block_size = 8;
1194 dct_linesize =
linesize <<
s->c.interlaced_dct;
1197 if (!
s->c.mb_intra) {
1205 if (
s->c.chroma_y_shift) {
1220 put_dct(
s,
block[1], 1, dest_y + block_size, dct_linesize,
s->c.qscale);
1221 put_dct(
s,
block[2], 2, dest_y + dct_offset , dct_linesize,
s->c.qscale);
1222 put_dct(
s,
block[3], 3, dest_y + dct_offset + block_size, dct_linesize,
s->c.qscale);
1225 if (
s->c.chroma_y_shift) {
1231 put_dct(
s,
block[4], 4, dest_cb, dct_linesize,
s->c.chroma_qscale);
1232 put_dct(
s,
block[5], 5, dest_cr, dct_linesize,
s->c.chroma_qscale);
1233 put_dct(
s,
block[6], 6, dest_cb + dct_offset, dct_linesize,
s->c.chroma_qscale);
1234 put_dct(
s,
block[7], 7, dest_cr + dct_offset, dct_linesize,
s->c.chroma_qscale);
1246 for (y = 0; y < 16; y++) {
1247 for (x = 0; x < 16; x++) {
1261 w =
s->c.width & ~15;
1262 h =
s->c.height & ~15;
1264 for (y = 0; y <
h; y += 16) {
1265 for (x = 0; x <
w; x += 16) {
1272 acc += sae + 500 < sad;
1298 for (
int i = 0;
f->data[
i];
i++) {
1319 int display_picture_number = 0,
ret;
1321 : (
s->c.low_delay ? 0 : 1);
1322 int flush_offset = 1;
1337 "Invalid pts (%"PRId64
") <= last (%"PRId64
")\n",
1342 if (!
s->c.low_delay && display_picture_number == 1)
1351 "Warning: AVFrame.pts=? trying to guess (%"PRId64
")\n",
1354 pts = display_picture_number;
1358 if (pic_arg->
linesize[0] !=
s->c.linesize ||
1359 pic_arg->
linesize[1] !=
s->c.uvlinesize ||
1360 pic_arg->
linesize[2] !=
s->c.uvlinesize)
1362 if ((
s->c.width & 15) || (
s->c.height & 15))
1370 pic_arg->
linesize[1],
s->c.linesize,
s->c.uvlinesize);
1385 for (
int i = 0;
i < 3;
i++) {
1386 ptrdiff_t src_stride = pic_arg->
linesize[
i];
1387 ptrdiff_t dst_stride =
i ?
s->c.uvlinesize :
s->c.linesize;
1388 int h_shift =
i ?
s->c.chroma_x_shift : 0;
1389 int v_shift =
i ?
s->c.chroma_y_shift : 0;
1392 const uint8_t *
src = pic_arg->
data[
i];
1397 && !
s->c.progressive_sequence
1398 &&
FFALIGN(
s->c.height, 32) -
s->c.height > 16)
1401 if (!
s->c.avctx->rc_buffer_size)
1404 if (src_stride == dst_stride)
1405 memcpy(
dst,
src, src_stride *
h - src_stride +
w);
1408 uint8_t *dst2 =
dst;
1410 memcpy(dst2,
src,
w);
1415 if ((
s->c.width & 15) || (
s->c.height & (vpad-1))) {
1416 s->mpvencdsp.draw_edges(
dst, dst_stride,
1434 for (flush_offset = 0; flush_offset < encoding_delay + 1; flush_offset++)
1438 encoding_delay -= flush_offset - 1;
1462 for (
int plane = 0; plane < 3; plane++) {
1463 const int stride =
p->f->linesize[plane];
1464 const int bw = plane ? 1 : 2;
1465 for (
int y = 0; y <
s->c.mb_height * bw; y++) {
1466 for (
int x = 0; x <
s->c.mb_width * bw; x++) {
1467 int off =
p->shared ? 0 : 16;
1468 const uint8_t *dptr =
p->f->data[plane] + 8 * (x + y *
stride) + off;
1469 const uint8_t *rptr =
ref->f->data[plane] + 8 * (x + y *
stride);
1473 case 0: score =
FFMAX(score, v);
break;
1474 case 1: score +=
FFABS(v);
break;
1475 case 2: score64 += v * (
int64_t)v;
break;
1487 score64 = pow(score64 / (
double)(
s->c.mb_width *
s->c.mb_height),
1490 if (score64 < m->frame_skip_threshold)
1525 int out_size, p_lambda, b_lambda, lambda2;
1527 int best_b_count = -1;
1541 b_lambda = p_lambda;
1549 if (pre_input_ptr) {
1550 const uint8_t *
data[4];
1553 if (!pre_input_ptr->
shared &&
i) {
1594 c->mb_decision =
s->c.avctx->mb_decision;
1595 c->me_cmp =
s->c.avctx->me_cmp;
1596 c->mb_cmp =
s->c.avctx->mb_cmp;
1597 c->me_sub_cmp =
s->c.avctx->me_sub_cmp;
1599 c->time_base =
s->c.avctx->time_base;
1642 rd +=
c->error[0] +
c->error[1] +
c->error[2];
1660 return best_b_count;
1682 s->c.next_pic.ptr &&
1734 for (
int i = 0;;
i++) {
1739 b_frames =
FFMAX(0,
i - 1);
1745 for (
int i = 0;
i < b_frames + 1;
i++)
1757 for (
int i = b_frames - 1;
i >= 0;
i--) {
1765 "warning, too many B-frames in a row\n");
1789 for (
int i = 0;
i < b_frames;
i++) {
1842 av_assert1(
s->c.mb_width ==
s->c.buffer_pools.alloc_mb_width);
1843 av_assert1(
s->c.mb_height ==
s->c.buffer_pools.alloc_mb_height);
1844 av_assert1(
s->c.mb_stride ==
s->c.buffer_pools.alloc_mb_stride);
1846 &
s->c.sc, &
s->c.buffer_pools,
s->c.mb_height);
1851 s->picture_number =
s->c.cur_pic.ptr->display_picture_number;
1864 if (
s->me.unrestricted_mv &&
1865 s->c.cur_pic.reference &&
1867 int hshift =
s->c.chroma_x_shift;
1868 int vshift =
s->c.chroma_y_shift;
1869 s->mpvencdsp.draw_edges(
s->c.cur_pic.data[0],
1870 s->c.cur_pic.linesize[0],
1871 s->c.h_edge_pos,
s->c.v_edge_pos,
1874 s->mpvencdsp.draw_edges(
s->c.cur_pic.data[1],
1875 s->c.cur_pic.linesize[1],
1876 s->c.h_edge_pos >> hshift,
1877 s->c.v_edge_pos >> vshift,
1881 s->mpvencdsp.draw_edges(
s->c.cur_pic.data[2],
1882 s->c.cur_pic.linesize[2],
1883 s->c.h_edge_pos >> hshift,
1884 s->c.v_edge_pos >> vshift,
1903 for (intra = 0; intra < 2; intra++) {
1904 if (
s->dct_count[intra] > (1 << 16)) {
1905 for (
i = 0;
i < 64;
i++) {
1906 s->dct_error_sum[intra][
i] >>= 1;
1908 s->dct_count[intra] >>= 1;
1911 for (
i = 0;
i < 64;
i++) {
1913 s->dct_count[intra] +
1914 s->dct_error_sum[intra][
i] / 2) /
1915 (
s->dct_error_sum[intra][
i] + 1);
1924 s->c.cur_pic.ptr->f->pict_type =
s->c.pict_type;
1932 if (
s->dct_error_sum) {
1938 const AVFrame *pic_arg,
int *got_packet)
1942 int stuffing_count,
ret;
1943 int context_count =
s->c.slice_context_count;
1960 if (
s->new_pic->data[0]) {
1961 int growing_buffer = context_count == 1 && !
s->data_partitioning;
1962 size_t pkt_size = 10000 +
s->c.mb_width *
s->c.mb_height *
1975 s->c.mb_width*
s->c.mb_height*12);
1976 if (!
s->mb_info_ptr)
1978 s->prev_mb_info =
s->last_mb_info =
s->mb_info_size = 0;
1981 s->c.pict_type =
s->new_pic->pict_type;
1986 if (growing_buffer) {
1996 if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) &&
s->c.out_format ==
FMT_MJPEG)
2006 s->lambda < m->
lmax) {
2008 (
s->c.qscale + 1) /
s->c.qscale);
2009 if (
s->adaptive_quant) {
2010 for (
int i = 0;
i <
s->c.mb_height *
s->c.mb_stride;
i++)
2011 s->lambda_table[
i] =
2012 FFMAX(
s->lambda_table[
i] + min_step,
2013 s->lambda_table[
i] * (
s->c.qscale + 1) /
2016 s->c.mb_skipped = 0;
2019 s->c.no_rounding ^=
s->flipflop_rounding;
2022 s->c.time_base =
s->c.last_time_base;
2023 s->c.last_non_b_time =
s->c.time -
s->c.pp_time;
2045 s->misc_bits +
s->i_tex_bits +
2052 if (stuffing_count) {
2058 switch (
s->c.codec_id) {
2061 while (stuffing_count--) {
2068 stuffing_count -= 4;
2069 while (stuffing_count--) {
2090 int vbv_delay, min_delay;
2100 "Internal error, negative bits\n");
2108 vbv_delay =
FFMAX(vbv_delay, min_delay);
2112 vbv_delay_ptr[0] &= 0xF8;
2113 vbv_delay_ptr[0] |= vbv_delay >> 13;
2114 vbv_delay_ptr[1] = vbv_delay >> 5;
2115 vbv_delay_ptr[2] &= 0x07;
2116 vbv_delay_ptr[2] |= vbv_delay << 3;
2124 (uint8_t*)props, props_size);
2132 pkt->
pts =
s->c.cur_pic.ptr->f->pts;
2135 if (!
s->c.cur_pic.ptr->coded_picture_number)
2168 int n,
int threshold)
2170 static const char tab[64] = {
2171 3, 2, 2, 1, 1, 1, 1, 1,
2172 1, 1, 1, 1, 1, 1, 1, 1,
2173 1, 1, 1, 1, 1, 1, 1, 1,
2174 0, 0, 0, 0, 0, 0, 0, 0,
2175 0, 0, 0, 0, 0, 0, 0, 0,
2176 0, 0, 0, 0, 0, 0, 0, 0,
2177 0, 0, 0, 0, 0, 0, 0, 0,
2178 0, 0, 0, 0, 0, 0, 0, 0
2183 int16_t *
block =
s->block[n];
2184 const int last_index =
s->c.block_last_index[n];
2187 if (threshold < 0) {
2189 threshold = -threshold;
2194 if (last_index <= skip_dc - 1)
2197 for (
i = 0;
i <= last_index;
i++) {
2198 const int j =
s->c.intra_scantable.permutated[
i];
2201 if (skip_dc &&
i == 0)
2205 }
else if (
level > 1) {
2211 if (score >= threshold)
2213 for (
i = skip_dc;
i <= last_index;
i++) {
2214 const int j =
s->c.intra_scantable.permutated[
i];
2218 s->c.block_last_index[n] = 0;
2220 s->c.block_last_index[n] = -1;
2227 const int maxlevel =
s->max_qcoeff;
2228 const int minlevel =
s->min_qcoeff;
2231 if (
s->c.mb_intra) {
2236 for (;
i <= last_index;
i++) {
2237 const int j =
s->c.intra_scantable.permutated[
i];
2240 if (
level > maxlevel) {
2243 }
else if (
level < minlevel) {
2253 "warning, clipping %d dct coefficients to %d..%d\n",
2261 for (y = 0; y < 8; y++) {
2262 for (x = 0; x < 8; x++) {
2268 for (y2 =
FFMAX(y - 1, 0); y2 <
FFMIN(8, y + 2); y2++) {
2269 for (x2=
FFMAX(x - 1, 0); x2 <
FFMIN(8, x + 2); x2++) {
2270 int v = ptr[x2 + y2 *
stride];
2282 int motion_x,
int motion_y,
2283 int mb_block_height,
2292 #define INTERLACED_DCT(s) ((chroma_format == CHROMA_420 || chroma_format == CHROMA_422) && \
2293 (s)->c.avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT)
2295 int16_t orig[12][64];
2296 const int mb_x =
s->c.mb_x;
2297 const int mb_y =
s->c.mb_y;
2300 int dct_offset =
s->c.linesize * 8;
2301 int uv_dct_offset =
s->c.uvlinesize * 8;
2302 const uint8_t *ptr_y, *ptr_cb, *ptr_cr;
2303 ptrdiff_t wrap_y, wrap_c;
2305 for (
i = 0;
i < mb_block_count;
i++)
2306 skip_dct[
i] =
s->skipdct;
2308 if (
s->adaptive_quant) {
2309 const int last_qp =
s->c.qscale;
2310 const int mb_xy =
mb_x +
mb_y *
s->c.mb_stride;
2312 s->lambda =
s->lambda_table[mb_xy];
2317 s->dquant =
s->c.cur_pic.qscale_table[mb_xy] - last_qp;
2323 if (!
s->c.mb_intra) {
2338 wrap_y =
s->c.linesize;
2339 wrap_c =
s->c.uvlinesize;
2340 ptr_y =
s->new_pic->data[0] +
2342 ptr_cb =
s->new_pic->data[1] +
2343 (
mb_y * mb_block_height * wrap_c) +
mb_x * mb_block_width;
2344 ptr_cr =
s->new_pic->data[2] +
2345 (
mb_y * mb_block_height * wrap_c) +
mb_x * mb_block_width;
2347 if ((
mb_x * 16 + 16 >
s->c.width ||
mb_y * 16 + 16 >
s->c.height) &&
2349 uint8_t *ebuf =
s->c.sc.edge_emu_buffer + 38 * wrap_y;
2352 s->c.vdsp.emulated_edge_mc(ebuf, ptr_y,
2355 s->c.width,
s->c.height);
2357 s->c.vdsp.emulated_edge_mc(ebuf + 16 * wrap_y, ptr_cb,
2359 mb_block_width, mb_block_height,
2360 mb_x * mb_block_width,
mb_y * mb_block_height,
2362 ptr_cb = ebuf + 16 * wrap_y;
2363 s->c.vdsp.emulated_edge_mc(ebuf + 16 * wrap_y + 16, ptr_cr,
2365 mb_block_width, mb_block_height,
2366 mb_x * mb_block_width,
mb_y * mb_block_height,
2368 ptr_cr = ebuf + 16 * wrap_y + 16;
2371 if (
s->c.mb_intra) {
2373 int progressive_score, interlaced_score;
2375 s->c.interlaced_dct = 0;
2376 progressive_score =
s->ildct_cmp[1](
s, ptr_y,
NULL, wrap_y, 8) +
2377 s->ildct_cmp[1](
s, ptr_y + wrap_y * 8,
2378 NULL, wrap_y, 8) - 400;
2380 if (progressive_score > 0) {
2381 interlaced_score =
s->ildct_cmp[1](
s, ptr_y,
2382 NULL, wrap_y * 2, 8) +
2383 s->ildct_cmp[1](
s, ptr_y + wrap_y,
2384 NULL, wrap_y * 2, 8);
2385 if (progressive_score > interlaced_score) {
2386 s->c.interlaced_dct = 1;
2388 dct_offset = wrap_y;
2389 uv_dct_offset = wrap_c;
2398 s->pdsp.get_pixels(
s->block[0], ptr_y, wrap_y);
2399 s->pdsp.get_pixels(
s->block[1], ptr_y + 8, wrap_y);
2400 s->pdsp.get_pixels(
s->block[2], ptr_y + dct_offset, wrap_y);
2401 s->pdsp.get_pixels(
s->block[3], ptr_y + dct_offset + 8, wrap_y);
2407 s->pdsp.get_pixels(
s->block[4], ptr_cb, wrap_c);
2408 s->pdsp.get_pixels(
s->block[5], ptr_cr, wrap_c);
2410 s->pdsp.get_pixels(
s->block[6], ptr_cb + uv_dct_offset, wrap_c);
2411 s->pdsp.get_pixels(
s->block[7], ptr_cr + uv_dct_offset, wrap_c);
2413 s->pdsp.get_pixels(
s->block[ 6], ptr_cb + 8, wrap_c);
2414 s->pdsp.get_pixels(
s->block[ 7], ptr_cr + 8, wrap_c);
2415 s->pdsp.get_pixels(
s->block[ 8], ptr_cb + uv_dct_offset, wrap_c);
2416 s->pdsp.get_pixels(
s->block[ 9], ptr_cr + uv_dct_offset, wrap_c);
2417 s->pdsp.get_pixels(
s->block[10], ptr_cb + uv_dct_offset + 8, wrap_c);
2418 s->pdsp.get_pixels(
s->block[11], ptr_cr + uv_dct_offset + 8, wrap_c);
2424 uint8_t *dest_y, *dest_cb, *dest_cr;
2426 dest_y =
s->c.dest[0];
2427 dest_cb =
s->c.dest[1];
2428 dest_cr =
s->c.dest[2];
2431 op_pix =
s->c.hdsp.put_pixels_tab;
2432 op_qpix =
s->c.qdsp.put_qpel_pixels_tab;
2434 op_pix =
s->c.hdsp.put_no_rnd_pixels_tab;
2435 op_qpix =
s->c.qdsp.put_no_rnd_qpel_pixels_tab;
2442 op_pix =
s->c.hdsp.avg_pixels_tab;
2443 op_qpix =
s->c.qdsp.avg_qpel_pixels_tab;
2452 int progressive_score, interlaced_score;
2454 s->c.interlaced_dct = 0;
2455 progressive_score =
s->ildct_cmp[0](
s, dest_y, ptr_y, wrap_y, 8) +
2456 s->ildct_cmp[0](
s, dest_y + wrap_y * 8,
2461 progressive_score -= 400;
2463 if (progressive_score > 0) {
2464 interlaced_score =
s->ildct_cmp[0](
s, dest_y, ptr_y,
2466 s->ildct_cmp[0](
s, dest_y + wrap_y,
2470 if (progressive_score > interlaced_score) {
2471 s->c.interlaced_dct = 1;
2473 dct_offset = wrap_y;
2474 uv_dct_offset = wrap_c;
2482 s->pdsp.diff_pixels(
s->block[0], ptr_y, dest_y, wrap_y);
2483 s->pdsp.diff_pixels(
s->block[1], ptr_y + 8, dest_y + 8, wrap_y);
2484 s->pdsp.diff_pixels(
s->block[2], ptr_y + dct_offset,
2485 dest_y + dct_offset, wrap_y);
2486 s->pdsp.diff_pixels(
s->block[3], ptr_y + dct_offset + 8,
2487 dest_y + dct_offset + 8, wrap_y);
2493 s->pdsp.diff_pixels(
s->block[4], ptr_cb, dest_cb, wrap_c);
2494 s->pdsp.diff_pixels(
s->block[5], ptr_cr, dest_cr, wrap_c);
2496 s->pdsp.diff_pixels(
s->block[6], ptr_cb + uv_dct_offset,
2497 dest_cb + uv_dct_offset, wrap_c);
2498 s->pdsp.diff_pixels(
s->block[7], ptr_cr + uv_dct_offset,
2499 dest_cr + uv_dct_offset, wrap_c);
2503 if (
s->mc_mb_var[
s->c.mb_stride *
mb_y +
mb_x] < 2 *
s->c.qscale *
s->c.qscale) {
2505 if (
s->sad_cmp[1](
NULL, ptr_y, dest_y, wrap_y, 8) < 20 *
s->c.qscale)
2507 if (
s->sad_cmp[1](
NULL, ptr_y + 8, dest_y + 8, wrap_y, 8) < 20 *
s->c.qscale)
2509 if (
s->sad_cmp[1](
NULL, ptr_y + dct_offset, dest_y + dct_offset,
2510 wrap_y, 8) < 20 *
s->c.qscale)
2512 if (
s->sad_cmp[1](
NULL, ptr_y + dct_offset + 8, dest_y + dct_offset + 8,
2513 wrap_y, 8) < 20 *
s->c.qscale)
2515 if (
s->sad_cmp[1](
NULL, ptr_cb, dest_cb, wrap_c, 8) < 20 *
s->c.qscale)
2517 if (
s->sad_cmp[1](
NULL, ptr_cr, dest_cr, wrap_c, 8) < 20 *
s->c.qscale)
2520 if (
s->sad_cmp[1](
NULL, ptr_cb + uv_dct_offset,
2521 dest_cb + uv_dct_offset,
2522 wrap_c, 8) < 20 *
s->c.qscale)
2524 if (
s->sad_cmp[1](
NULL, ptr_cr + uv_dct_offset,
2525 dest_cr + uv_dct_offset,
2526 wrap_c, 8) < 20 *
s->c.qscale)
2532 if (
s->quantizer_noise_shaping) {
2553 memcpy(orig[0],
s->block[0],
sizeof(int16_t) * 64 * mb_block_count);
2559 for (
i = 0;
i < mb_block_count;
i++) {
2562 s->c.block_last_index[
i] =
s->dct_quantize(
s,
s->block[
i],
i,
s->c.qscale, &
overflow);
2571 s->c.block_last_index[
i] = -1;
2573 if (
s->quantizer_noise_shaping) {
2574 for (
i = 0;
i < mb_block_count;
i++) {
2576 s->c.block_last_index[
i] =
2578 orig[
i],
i,
s->c.qscale);
2583 if (
s->luma_elim_threshold && !
s->c.mb_intra)
2584 for (
i = 0;
i < 4;
i++)
2586 if (
s->chroma_elim_threshold && !
s->c.mb_intra)
2587 for (
i = 4;
i < mb_block_count;
i++)
2591 for (
i = 0;
i < mb_block_count;
i++) {
2592 if (
s->c.block_last_index[
i] == -1)
2593 s->coded_score[
i] = INT_MAX / 256;
2599 s->c.block_last_index[4] =
2600 s->c.block_last_index[5] = 0;
2602 s->block[5][0] = (1024 +
s->c.c_dc_scale / 2) /
s->c.c_dc_scale;
2604 for (
i=6;
i<12;
i++) {
2605 s->c.block_last_index[
i] = 0;
2606 s->block[
i][0] =
s->block[4][0];
2613 for (
i = 0;
i < mb_block_count;
i++) {
2615 if (
s->c.block_last_index[
i] > 0) {
2616 for (j = 63; j > 0; j--) {
2617 if (
s->block[
i][
s->c.intra_scantable.permutated[j]])
2620 s->c.block_last_index[
i] = j;
2625 s->encode_mb(
s,
s->block, motion_x, motion_y);
2657 #define COPY_CONTEXT(BEFORE, AFTER, DST_TYPE, SRC_TYPE) \
2658 static inline void BEFORE ##_context_before_encode(DST_TYPE *const d, \
2659 const SRC_TYPE *const s) \
2662 memcpy(d->c.last_mv, s->c.last_mv, 2*2*2*sizeof(int)); \
2665 d->mb_skip_run = s->mb_skip_run; \
2666 for (int i = 0; i < 3; i++) \
2667 d->c.last_dc[i] = s->c.last_dc[i]; \
2670 d->mv_bits = s->mv_bits; \
2671 d->i_tex_bits = s->i_tex_bits; \
2672 d->p_tex_bits = s->p_tex_bits; \
2673 d->i_count = s->i_count; \
2674 d->misc_bits = s->misc_bits; \
2677 d->c.mb_skipped = 0; \
2678 d->c.qscale = s->c.qscale; \
2679 d->dquant = s->dquant; \
2681 d->esc3_level_length = s->esc3_level_length; \
2684 static inline void AFTER ## _context_after_encode(DST_TYPE *const d, \
2685 const SRC_TYPE *const s, \
2686 int data_partitioning) \
2689 memcpy(d->c.mv, s->c.mv, 2*4*2*sizeof(int)); \
2690 memcpy(d->c.last_mv, s->c.last_mv, 2*2*2*sizeof(int)); \
2693 d->mb_skip_run = s->mb_skip_run; \
2694 for (int i = 0; i < 3; i++) \
2695 d->c.last_dc[i] = s->c.last_dc[i]; \
2698 d->mv_bits = s->mv_bits; \
2699 d->i_tex_bits = s->i_tex_bits; \
2700 d->p_tex_bits = s->p_tex_bits; \
2701 d->i_count = s->i_count; \
2702 d->misc_bits = s->misc_bits; \
2704 d->c.mb_intra = s->c.mb_intra; \
2705 d->c.mb_skipped = s->c.mb_skipped; \
2706 d->c.mv_type = s->c.mv_type; \
2707 d->c.mv_dir = s->c.mv_dir; \
2709 if (data_partitioning) { \
2711 d->tex_pb = s->tex_pb; \
2713 d->block = s->block; \
2714 for (int i = 0; i < 8; i++) \
2715 d->c.block_last_index[i] = s->c.block_last_index[i]; \
2716 d->c.interlaced_dct = s->c.interlaced_dct; \
2717 d->c.qscale = s->c.qscale; \
2719 d->esc3_level_length = s->esc3_level_length; \
2727 int *dmin,
int *next_block,
int motion_x,
int motion_y)
2730 uint8_t *dest_backup[3];
2732 reset_context_before_encode(
s, backup);
2734 s->block =
s->blocks[*next_block];
2735 s->pb = pb[*next_block];
2736 if (
s->data_partitioning) {
2737 s->pb2 = pb2 [*next_block];
2738 s->tex_pb= tex_pb[*next_block];
2742 memcpy(dest_backup,
s->c.dest,
sizeof(
s->c.dest));
2743 s->c.dest[0] =
s->c.sc.rd_scratchpad;
2744 s->c.dest[1] =
s->c.sc.rd_scratchpad + 16*
s->c.linesize;
2745 s->c.dest[2] =
s->c.sc.rd_scratchpad + 16*
s->c.linesize + 8;
2752 if (
s->data_partitioning) {
2760 score *=
s->lambda2;
2765 memcpy(
s->c.dest, dest_backup,
sizeof(
s->c.dest));
2772 save_context_after_encode(best,
s,
s->data_partitioning);
2784 else if(
w==8 &&
h==8)
2802 int chroma_mb_w =
w >>
s->c.chroma_x_shift;
2803 int chroma_mb_h =
h >>
s->c.chroma_y_shift;
2805 if (
s->c.mb_x*16 + 16 >
s->c.width )
w =
s->c.width -
s->c.mb_x*16;
2806 if (
s->c.mb_y*16 + 16 >
s->c.height)
h =
s->c.height-
s->c.mb_y*16;
2809 return s->n_sse_cmp[0](
s,
s->new_pic->data[0] +
s->c.mb_x * 16 +
s->c.mb_y *
s->c.linesize * 16,
2810 s->c.dest[0],
s->c.linesize, 16) +
2811 s->n_sse_cmp[1](
s,
s->new_pic->data[1] +
s->c.mb_x * chroma_mb_w +
s->c.mb_y *
s->c.uvlinesize * chroma_mb_h,
2812 s->c.dest[1],
s->c.uvlinesize, chroma_mb_h) +
2813 s->n_sse_cmp[1](
s,
s->new_pic->data[2] +
s->c.mb_x * chroma_mb_w +
s->c.mb_y *
s->c.uvlinesize * chroma_mb_h,
2814 s->c.dest[2],
s->c.uvlinesize, chroma_mb_h);
2816 return sse(
s,
s->new_pic->data[0] +
s->c.mb_x * 16 +
s->c.mb_y *
s->c.linesize * 16,
2817 s->c.dest[0],
w,
h,
s->c.linesize) +
2818 sse(
s,
s->new_pic->data[1] +
s->c.mb_x * chroma_mb_w +
s->c.mb_y *
s->c.uvlinesize * chroma_mb_h,
2819 s->c.dest[1],
w >>
s->c.chroma_x_shift,
h >>
s->c.chroma_y_shift,
s->c.uvlinesize) +
2820 sse(
s,
s->new_pic->data[2] +
s->c.mb_x * chroma_mb_w +
s->c.mb_y *
s->c.uvlinesize * chroma_mb_h,
2821 s->c.dest[2],
w >>
s->c.chroma_x_shift,
h >>
s->c.chroma_y_shift,
s->c.uvlinesize);
2829 s->me.dia_size =
s->c.avctx->pre_dia_size;
2830 s->c.first_slice_line = 1;
2831 for (
s->c.mb_y =
s->c.end_mb_y - 1;
s->c.mb_y >=
s->c.start_mb_y;
s->c.mb_y--) {
2832 for (
s->c.mb_x =
s->c.mb_width - 1;
s->c.mb_x >=0 ;
s->c.mb_x--)
2834 s->c.first_slice_line = 0;
2845 s->me.dia_size =
s->c.avctx->dia_size;
2846 s->c.first_slice_line = 1;
2847 for (
s->c.mb_y =
s->c.start_mb_y;
s->c.mb_y <
s->c.end_mb_y;
s->c.mb_y++) {
2850 for (
s->c.mb_x = 0;
s->c.mb_x <
s->c.mb_width;
s->c.mb_x++) {
2851 s->c.block_index[0] += 2;
2852 s->c.block_index[1] += 2;
2853 s->c.block_index[2] += 2;
2854 s->c.block_index[3] += 2;
2862 s->c.first_slice_line = 0;
2870 for (
int mb_y =
s->c.start_mb_y; mb_y < s->
c.end_mb_y; mb_y++) {
2871 for (
int mb_x = 0; mb_x <
s->c.mb_width; mb_x++) {
2874 const uint8_t *
pix =
s->new_pic->data[0] + (yy *
s->c.linesize) + xx;
2876 int sum =
s->mpvencdsp.pix_sum(
pix,
s->c.linesize);
2878 varc = (
s->mpvencdsp.pix_norm1(
pix,
s->c.linesize) -
2879 (((unsigned) sum * sum) >> 8) + 500 + 128) >> 8;
2881 s->mb_var [
s->c.mb_stride * mb_y + mb_x] = varc;
2882 s->mb_mean[
s->c.mb_stride * mb_y + mb_x] = (sum+128)>>8;
2883 s->me.mb_var_sum_temp += varc;
2892 if (
s->partitioned_frame)
2896 }
else if ((CONFIG_MJPEG_ENCODER || CONFIG_AMV_ENCODER) &&
2899 }
else if (CONFIG_SPEEDHQ_ENCODER &&
s->c.out_format ==
FMT_SPEEDHQ) {
2911 uint8_t *ptr =
s->mb_info_ptr +
s->mb_info_size - 12;
2913 int mba =
s->c.mb_x +
s->c.mb_width * (
s->c.mb_y %
s->gob_index);
2914 int gobn =
s->c.mb_y /
s->gob_index;
2916 if (CONFIG_H263_ENCODER)
2918 bytestream_put_le32(&ptr,
offset);
2919 bytestream_put_byte(&ptr,
s->c.qscale);
2920 bytestream_put_byte(&ptr, gobn);
2921 bytestream_put_le16(&ptr, mba);
2922 bytestream_put_byte(&ptr, pred_x);
2923 bytestream_put_byte(&ptr, pred_y);
2925 bytestream_put_byte(&ptr, 0);
2926 bytestream_put_byte(&ptr, 0);
2934 s->mb_info_size += 12;
2935 s->prev_mb_info =
s->last_mb_info;
2947 if (!
s->mb_info_size)
2948 s->mb_info_size += 12;
2955 &&
s->c.slice_context_count == 1
2956 &&
s->pb.buf ==
s->c.avctx->internal->byte_buffer) {
2957 int lastgob_pos =
s->ptr_lastgob -
s->pb.buf;
2959 uint8_t *new_buffer =
NULL;
2960 int new_buffer_size = 0;
2962 if ((
s->c.avctx->internal->byte_buffer_size + size_increase) >= INT_MAX/8) {
2970 s->c.avctx->internal->byte_buffer_size + size_increase);
2974 memcpy(new_buffer,
s->c.avctx->internal->byte_buffer,
s->c.avctx->internal->byte_buffer_size);
2975 av_free(
s->c.avctx->internal->byte_buffer);
2976 s->c.avctx->internal->byte_buffer = new_buffer;
2977 s->c.avctx->internal->byte_buffer_size = new_buffer_size;
2979 s->ptr_lastgob =
s->pb.buf + lastgob_pos;
2988 int chr_h = 16 >>
s->c.chroma_y_shift;
3013 s->c.last_dc[
i] = 128 <<
s->c.intra_dc_precision;
3015 s->encoding_error[
i] = 0;
3018 s->c.last_dc[0] = 128 * 8 / 13;
3019 s->c.last_dc[1] = 128 * 8 / 14;
3020 s->c.last_dc[2] = 128 * 8 / 14;
3021 #if CONFIG_MPEG4_ENCODER
3022 }
else if (
s->partitioned_frame) {
3028 memset(
s->c.last_mv, 0,
sizeof(
s->c.last_mv));
3032 s->c.resync_mb_x = 0;
3033 s->c.resync_mb_y = 0;
3034 s->c.first_slice_line = 1;
3035 s->ptr_lastgob =
s->pb.buf;
3036 for (
int mb_y_order =
s->c.start_mb_y; mb_y_order < s->
c.end_mb_y; mb_y_order++) {
3041 if (first_in_slice && mb_y_order !=
s->c.start_mb_y)
3043 s->c.last_dc[0] =
s->c.last_dc[1] =
s->c.last_dc[2] = 1024 <<
s->c.intra_dc_precision;
3053 for (
int mb_x = 0; mb_x <
s->c.mb_width; mb_x++) {
3058 int size_increase =
s->c.avctx->internal->byte_buffer_size/4
3066 if (
s->data_partitioning) {
3080 xy =
s->c.mb_y *
s->c.mb_stride +
s->c.mb_x;
3081 mb_type =
s->mb_type[xy];
3085 int current_packet_size, is_gob_start;
3088 - (
s->ptr_lastgob -
s->pb.buf);
3090 is_gob_start =
s->rtp_payload_size &&
3091 current_packet_size >=
s->rtp_payload_size &&
3094 if (
s->c.start_mb_y == mb_y && mb_y > 0 && mb_x == 0) is_gob_start = 1;
3096 switch (
s->c.codec_id) {
3099 if (!
s->h263_slice_structured)
3100 if (
s->c.mb_x ||
s->c.mb_y %
s->gob_index) is_gob_start = 0;
3103 if (
s->c.mb_x == 0 &&
s->c.mb_y != 0) is_gob_start = 1;
3110 if (
s->c.mb_x == 0 &&
s->c.mb_y != 0) is_gob_start = 1;
3115 if (
s->c.start_mb_y != mb_y || mb_x != 0) {
3125 if (
s->error_rate &&
s->c.resync_mb_x +
s->c.resync_mb_y > 0) {
3127 int d = 100 /
s->error_rate;
3129 current_packet_size=0;
3130 s->pb.buf_ptr=
s->ptr_lastgob;
3135 switch (
s->c.codec_id) {
3137 if (CONFIG_MPEG4_ENCODER) {
3145 if (CONFIG_MPEG1VIDEO_ENCODER || CONFIG_MPEG2VIDEO_ENCODER) {
3150 #if CONFIG_H263P_ENCODER
3157 if (CONFIG_H263_ENCODER) {
3166 s->misc_bits+=
bits -
s->last_bits;
3170 s->ptr_lastgob += current_packet_size;
3171 s->c.first_slice_line = 1;
3172 s->c.resync_mb_x = mb_x;
3173 s->c.resync_mb_y = mb_y;
3177 if (
s->c.resync_mb_x ==
s->c.mb_x &&
3178 s->c.resync_mb_y+1 ==
s->c.mb_y)
3179 s->c.first_slice_line = 0;
3181 s->c.mb_skipped = 0;
3188 int pb_bits_count, pb2_bits_count, tex_pb_bits_count;
3190 backup_context_before_encode(&backup_s,
s);
3192 if (
s->data_partitioning) {
3193 backup_s.pb2=
s->pb2;
3194 backup_s.tex_pb=
s->tex_pb;
3201 s->c.mv[0][0][0] =
s->p_mv_table[xy][0];
3202 s->c.mv[0][0][1] =
s->p_mv_table[xy][1];
3204 &dmin, &next_block,
s->c.mv[0][0][0],
s->c.mv[0][0][1]);
3211 int j =
s->c.field_select[0][
i] =
s->p_field_select_table[
i][xy];
3212 s->c.mv[0][
i][0] =
s->c.p_field_mv_table[
i][j][xy][0];
3213 s->c.mv[0][
i][1] =
s->c.p_field_mv_table[
i][j][xy][1];
3216 &dmin, &next_block, 0, 0);
3222 s->c.mv[0][0][0] = 0;
3223 s->c.mv[0][0][1] = 0;
3225 &dmin, &next_block,
s->c.mv[0][0][0],
s->c.mv[0][0][1]);
3232 s->c.mv[0][
i][0] =
s->c.cur_pic.motion_val[0][
s->c.block_index[
i]][0];
3233 s->c.mv[0][
i][1] =
s->c.cur_pic.motion_val[0][
s->c.block_index[
i]][1];
3236 &dmin, &next_block, 0, 0);
3242 s->c.mv[0][0][0] =
s->b_forw_mv_table[xy][0];
3243 s->c.mv[0][0][1] =
s->b_forw_mv_table[xy][1];
3245 &dmin, &next_block,
s->c.mv[0][0][0],
s->c.mv[0][0][1]);
3251 s->c.mv[1][0][0] =
s->b_back_mv_table[xy][0];
3252 s->c.mv[1][0][1] =
s->b_back_mv_table[xy][1];
3254 &dmin, &next_block,
s->c.mv[1][0][0],
s->c.mv[1][0][1]);
3260 s->c.mv[0][0][0] =
s->b_bidir_forw_mv_table[xy][0];
3261 s->c.mv[0][0][1] =
s->b_bidir_forw_mv_table[xy][1];
3262 s->c.mv[1][0][0] =
s->b_bidir_back_mv_table[xy][0];
3263 s->c.mv[1][0][1] =
s->b_bidir_back_mv_table[xy][1];
3265 &dmin, &next_block, 0, 0);
3272 int j =
s->c.field_select[0][
i] =
s->b_field_select_table[0][
i][xy];
3273 s->c.mv[0][
i][0] =
s->b_field_mv_table[0][
i][j][xy][0];
3274 s->c.mv[0][
i][1] =
s->b_field_mv_table[0][
i][j][xy][1];
3277 &dmin, &next_block, 0, 0);
3284 int j =
s->c.field_select[1][
i] =
s->b_field_select_table[1][
i][xy];
3285 s->c.mv[1][
i][0] =
s->b_field_mv_table[1][
i][j][xy][0];
3286 s->c.mv[1][
i][1] =
s->b_field_mv_table[1][
i][j][xy][1];
3289 &dmin, &next_block, 0, 0);
3295 for(dir=0; dir<2; dir++){
3297 int j =
s->c.field_select[dir][
i] =
s->b_field_select_table[dir][
i][xy];
3298 s->c.mv[dir][
i][0] =
s->b_field_mv_table[dir][
i][j][xy][0];
3299 s->c.mv[dir][
i][1] =
s->b_field_mv_table[dir][
i][j][xy][1];
3303 &dmin, &next_block, 0, 0);
3309 s->c.mv[0][0][0] = 0;
3310 s->c.mv[0][0][1] = 0;
3312 &dmin, &next_block, 0, 0);
3313 s->c.mbintra_table[xy] = 1;
3318 const int last_qp = backup_s.c.qscale;
3322 static const int dquant_tab[4]={-1,1,-2,2};
3323 int storecoefs =
s->c.mb_intra &&
s->c.dc_val;
3331 s->c.mv[0][0][0] = best_s.
c.
mv[0][0][0];
3332 s->c.mv[0][0][1] = best_s.
c.
mv[0][0][1];
3333 s->c.mv[1][0][0] = best_s.
c.
mv[1][0][0];
3334 s->c.mv[1][0][1] = best_s.
c.
mv[1][0][1];
3337 for(; qpi<4; qpi++){
3338 int dquant= dquant_tab[qpi];
3339 qp= last_qp + dquant;
3340 if (qp < s->
c.avctx->qmin || qp >
s->c.avctx->qmax)
3342 backup_s.dquant= dquant;
3345 dc[
i] =
s->c.dc_val[
s->c.block_index[
i]];
3346 memcpy(ac[
i],
s->c.ac_val[
s->c.block_index[
i]],
sizeof(*
s->c.ac_val));
3351 &dmin, &next_block,
s->c.mv[mvdir][0][0],
s->c.mv[mvdir][0][1]);
3355 s->c.dc_val[
s->c.block_index[
i]] =
dc[
i];
3356 memcpy(
s->c.ac_val[
s->c.block_index[
i]], ac[
i],
sizeof(*
s->c.ac_val));
3364 int mx=
s->b_direct_mv_table[xy][0];
3365 int my=
s->b_direct_mv_table[xy][1];
3367 backup_s.dquant = 0;
3372 &dmin, &next_block,
mx,
my);
3375 backup_s.dquant = 0;
3380 &dmin, &next_block, 0, 0);
3385 coded |=
s->c.block_last_index[
i];
3388 memcpy(
s->c.mv, best_s.
c.
mv,
sizeof(
s->c.mv));
3393 mx =
s->c.mv[1][0][0];
3394 my =
s->c.mv[1][0][1];
3396 mx =
s->c.mv[0][0][0];
3397 my =
s->c.mv[0][0][1];
3410 &dmin, &next_block,
mx,
my);
3415 store_context_after_encode(
s, &best_s,
s->data_partitioning);
3419 ff_copy_bits(&backup_s.pb, bit_buf[next_block^1], pb_bits_count);
3422 if (
s->data_partitioning) {
3425 ff_copy_bits(&backup_s.pb2, bit_buf2[next_block^1], pb2_bits_count);
3426 s->pb2= backup_s.pb2;
3430 ff_copy_bits(&backup_s.tex_pb, bit_buf_tex[next_block^1], tex_pb_bits_count);
3431 s->tex_pb= backup_s.tex_pb;
3435 if (CONFIG_H263_ENCODER &&
3440 s->c.hdsp.put_pixels_tab[0][0](
s->c.dest[0],
s->c.sc.rd_scratchpad ,
s->c.linesize ,16);
3441 s->c.hdsp.put_pixels_tab[1][0](
s->c.dest[1],
s->c.sc.rd_scratchpad + 16*
s->c.linesize ,
s->c.uvlinesize, 8);
3442 s->c.hdsp.put_pixels_tab[1][0](
s->c.dest[2],
s->c.sc.rd_scratchpad + 16*
s->c.linesize + 8,
s->c.uvlinesize, 8);
3448 int motion_x = 0, motion_y = 0;
3456 motion_x=
s->c.mv[0][0][0] = 0;
3457 motion_y=
s->c.mv[0][0][1] = 0;
3458 s->c.mbintra_table[xy] = 1;
3463 motion_x=
s->c.mv[0][0][0] =
s->p_mv_table[xy][0];
3464 motion_y=
s->c.mv[0][0][1] =
s->p_mv_table[xy][1];
3471 int j =
s->c.field_select[0][
i] =
s->p_field_select_table[
i][xy];
3472 s->c.mv[0][
i][0] =
s->c.p_field_mv_table[
i][j][xy][0];
3473 s->c.mv[0][
i][1] =
s->c.p_field_mv_table[
i][j][xy][1];
3481 s->c.mv[0][
i][0] =
s->c.cur_pic.motion_val[0][
s->c.block_index[
i]][0];
3482 s->c.mv[0][
i][1] =
s->c.cur_pic.motion_val[0][
s->c.block_index[
i]][1];
3486 if (CONFIG_MPEG4_ENCODER) {
3489 motion_x=
s->b_direct_mv_table[xy][0];
3490 motion_y=
s->b_direct_mv_table[xy][1];
3495 if (CONFIG_MPEG4_ENCODER) {
3504 s->c.mv[0][0][0] =
s->b_bidir_forw_mv_table[xy][0];
3505 s->c.mv[0][0][1] =
s->b_bidir_forw_mv_table[xy][1];
3506 s->c.mv[1][0][0] =
s->b_bidir_back_mv_table[xy][0];
3507 s->c.mv[1][0][1] =
s->b_bidir_back_mv_table[xy][1];
3512 motion_x=
s->c.mv[1][0][0] =
s->b_back_mv_table[xy][0];
3513 motion_y=
s->c.mv[1][0][1] =
s->b_back_mv_table[xy][1];
3518 motion_x=
s->c.mv[0][0][0] =
s->b_forw_mv_table[xy][0];
3519 motion_y=
s->c.mv[0][0][1] =
s->b_forw_mv_table[xy][1];
3526 int j =
s->c.field_select[0][
i] =
s->b_field_select_table[0][
i][xy];
3527 s->c.mv[0][
i][0] =
s->b_field_mv_table[0][
i][j][xy][0];
3528 s->c.mv[0][
i][1] =
s->b_field_mv_table[0][
i][j][xy][1];
3536 int j =
s->c.field_select[1][
i] =
s->b_field_select_table[1][
i][xy];
3537 s->c.mv[1][
i][0] =
s->b_field_mv_table[1][
i][j][xy][0];
3538 s->c.mv[1][
i][1] =
s->b_field_mv_table[1][
i][j][xy][1];
3545 for(dir=0; dir<2; dir++){
3547 int j =
s->c.field_select[dir][
i] =
s->b_field_select_table[dir][
i][xy];
3548 s->c.mv[dir][
i][0] =
s->b_field_mv_table[dir][
i][j][xy][0];
3549 s->c.mv[dir][
i][1] =
s->b_field_mv_table[dir][
i][j][xy][1];
3555 "except CANDIDATE_MB_TYPE_SKIPPED which is never "
3556 "the only candidate (always coupled with INTER) "
3557 "so that it never reaches this switch");
3563 s->last_mv_dir =
s->c.mv_dir;
3565 if (CONFIG_H263_ENCODER &&
3572 s->c.cur_pic.qscale_table[xy] =
s->c.qscale;
3575 if (
s->c.mb_intra ) {
3576 s->p_mv_table[xy][0]=0;
3577 s->p_mv_table[xy][1]=0;
3578 #if CONFIG_H263_ENCODER
3579 }
else if (
s->c.h263_pred ||
s->c.h263_aic) {
3588 if (
s->c.mb_x*16 + 16 >
s->c.width )
w =
s->c.width -
s->c.mb_x*16;
3589 if (
s->c.mb_y*16 + 16 >
s->c.height)
h =
s->c.height-
s->c.mb_y*16;
3591 s->encoding_error[0] +=
sse(
3592 s,
s->new_pic->data[0] +
s->c.mb_x*16 +
s->c.mb_y*
s->c.linesize*16,
3593 s->c.dest[0],
w,
h,
s->c.linesize);
3594 s->encoding_error[1] +=
sse(
3595 s,
s->new_pic->data[1] +
s->c.mb_x*8 +
s->c.mb_y*
s->c.uvlinesize*chr_h,
3596 s->c.dest[1],
w>>1,
h>>
s->c.chroma_y_shift,
s->c.uvlinesize);
3597 s->encoding_error[2] +=
sse(
3598 s,
s->new_pic->data[2] +
s->c.mb_x*8 +
s->c.mb_y*
s->c.uvlinesize*chr_h,
3599 s->c.dest[2],
w>>1,
h>>
s->c.chroma_y_shift,
s->c.uvlinesize);
3601 if (
s->loop_filter) {
3602 if (CONFIG_H263_ENCODER &&
s->c.out_format ==
FMT_H263)
3605 ff_dlog(
s->c.avctx,
"MB %d %d bits\n",
3610 #if CONFIG_MSMPEG4ENC
3612 if (
s->c.msmpeg4_version != MSMP4_UNUSED &&
s->c.msmpeg4_version < MSMP4_WMV1 &&
3622 #define ADD(field) dst->field += src->field;
3623 #define MERGE(field) dst->field += src->field; src->field=0
3626 ADD(
me.scene_change_score);
3627 ADD(
me.mc_mb_var_sum_temp);
3628 ADD(
me.mb_var_sum_temp);
3635 MERGE(dct_count[0]);
3636 MERGE(dct_count[1]);
3642 ADD(encoding_error[0]);
3643 ADD(encoding_error[1]);
3644 ADD(encoding_error[2]);
3646 if (
dst->dct_error_sum) {
3647 for(
i=0;
i<64;
i++){
3648 MERGE(dct_error_sum[0][
i]);
3649 MERGE(dct_error_sum[1][
i]);
3668 s->c.cur_pic.ptr->f->quality =
quality;
3669 if (
s->c.cur_pic.ptr->f->quality < 0)
3673 if(
s->adaptive_quant){
3676 switch (
s->c.codec_id) {
3678 if (CONFIG_MPEG4_ENCODER)
3684 if (CONFIG_H263_ENCODER)
3689 s->lambda =
s->lambda_table[0];
3692 s->lambda =
s->c.cur_pic.ptr->f->quality;
3701 s->c.time =
s->c.cur_pic.ptr->f->pts *
s->c.avctx->time_base.num;
3704 s->c.pb_time =
s->c.pp_time - (
s->c.last_non_b_time -
s->c.time);
3705 av_assert1(
s->c.pb_time > 0 &&
s->c.pb_time <
s->c.pp_time);
3707 s->c.pp_time =
s->c.time -
s->c.last_non_b_time;
3708 s->c.last_non_b_time =
s->c.time;
3709 av_assert1(
s->picture_number == 0 ||
s->c.pp_time > 0);
3718 int context_count =
s->c.slice_context_count;
3722 if (
s->c.out_format ==
FMT_MPEG1 || (
s->c.h263_pred &&
s->c.msmpeg4_version == MSMP4_UNUSED))
3730 s->c.no_rounding =
s->c.msmpeg4_version >= MSMP4_V3;
3732 s->c.no_rounding ^=
s->flipflop_rounding;
3749 for (
int i = 0;
i < context_count;
i++) {
3751 int h =
s->c.mb_height;
3776 &
s->c.enc_contexts[0],
NULL,
3777 context_count,
sizeof(
void*));
3782 NULL, context_count,
sizeof(
void*));
3785 for (
int i = 0;
i <
s->c.mb_stride *
s->c.mb_height;
i++)
3791 NULL, context_count,
sizeof(
void*));
3794 for(
i=1;
i<context_count;
i++){
3804 for (
int i = 0;
i <
s->c.mb_stride *
s->c.mb_height;
i++)
3806 if (
s->c.msmpeg4_version >= MSMP4_V3)
3807 s->c.no_rounding = 1;
3808 ff_dlog(
s->c.avctx,
"Scene change detected, encoding as I Frame %"PRId64
" %"PRId64
"\n",
3850 for(dir=0; dir<2; dir++){
3856 s->b_field_mv_table[dir][
i][j], dir ?
s->b_code :
s->f_code,
type, 1);
3868 if (
s->c.qscale < 3 &&
s->max_qcoeff <= 128 &&
3875 (7 +
s->c.qscale) /
s->c.qscale, 65535);
3883 if (
s->c.avctx->intra_matrix) {
3885 luma_matrix =
s->c.avctx->intra_matrix;
3887 if (
s->c.avctx->chroma_intra_matrix)
3888 chroma_matrix =
s->c.avctx->chroma_intra_matrix;
3891 for (
int i = 1;
i < 64;
i++) {
3892 int j =
s->c.idsp.idct_permutation[
i];
3894 s->c.chroma_intra_matrix[j] =
av_clip_uint8((chroma_matrix[
i] *
s->c.qscale) >> 3);
3895 s->c. intra_matrix[j] =
av_clip_uint8(( luma_matrix[
i] *
s->c.qscale) >> 3);
3897 s->c.y_dc_scale_table =
3899 s->c.chroma_intra_matrix[0] =
3902 static const uint8_t y[32] = {13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13};
3903 static const uint8_t
c[32] = {14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14};
3904 for (
int i = 1;
i < 64;
i++) {
3910 s->c.y_dc_scale_table = y;
3911 s->c.c_dc_scale_table =
c;
3912 s->c.intra_matrix[0] = 13;
3913 s->c.chroma_intra_matrix[0] = 14;
3916 s->c.intra_matrix,
s->intra_quant_bias, 8, 8, 1);
3918 s->c.chroma_intra_matrix,
s->intra_quant_bias, 8, 8, 1);
3927 s->c.cur_pic.ptr->f->pict_type =
s->c.pict_type;
3932 s->c.mb_x =
s->c.mb_y = 0;
3940 for(
i=1;
i<context_count;
i++){
3944 NULL, context_count,
sizeof(
void*));
3945 for(
i=1;
i<context_count;
i++){
3946 if (
s->pb.buf_end ==
s->c.enc_contexts[
i]->pb.buf)
3956 if (!
s->dct_error_sum)
3959 const int intra =
s->c.mb_intra;
3960 s->dct_count[intra]++;
3961 s->mpvencdsp.denoise_dct(
block,
s->dct_error_sum[intra],
s->dct_offset[intra]);
3965 int16_t *
block,
int n,
3969 const uint8_t *scantable;
3970 const uint8_t *perm_scantable;
3972 unsigned int threshold1, threshold2;
3984 int coeff_count[64];
3985 int qmul, qadd, start_i, last_non_zero,
i,
dc;
3986 const int esc_length=
s->ac_esc_length;
3987 const uint8_t *length, *last_length;
3996 qadd= ((qscale-1)|1)*8;
3999 else mpeg2_qscale = qscale << 1;
4001 if (
s->c.mb_intra) {
4003 scantable =
s->c.intra_scantable.scantable;
4004 perm_scantable =
s->c.intra_scantable.permutated;
4005 if (!
s->c.h263_aic) {
4007 q =
s->c.y_dc_scale;
4009 q =
s->c.c_dc_scale;
4021 qmat = n < 4 ?
s->q_intra_matrix[qscale] :
s->q_chroma_intra_matrix[qscale];
4022 matrix = n < 4 ?
s->c.intra_matrix :
s->c.chroma_intra_matrix;
4026 if (n > 3 &&
s->intra_chroma_ac_vlc_length) {
4027 length =
s->intra_chroma_ac_vlc_length;
4028 last_length=
s->intra_chroma_ac_vlc_last_length;
4030 length =
s->intra_ac_vlc_length;
4031 last_length=
s->intra_ac_vlc_last_length;
4034 scantable =
s->c.inter_scantable.scantable;
4035 perm_scantable =
s->c.inter_scantable.permutated;
4038 qmat =
s->q_inter_matrix[qscale];
4040 length =
s->inter_ac_vlc_length;
4041 last_length=
s->inter_ac_vlc_last_length;
4046 threshold2= (threshold1<<1);
4048 for(
i=63;
i>=start_i;
i--) {
4049 const int j = scantable[
i];
4052 if(((uint64_t)(
level+threshold1))>threshold2){
4058 for(
i=start_i;
i<=last_non_zero;
i++) {
4059 const int j = scantable[
i];
4064 if(((uint64_t)(
level+threshold1))>threshold2){
4087 if(last_non_zero < start_i){
4088 memset(
block + start_i, 0, (64-start_i)*
sizeof(int16_t));
4089 return last_non_zero;
4092 score_tab[start_i]= 0;
4093 survivor[0]= start_i;
4096 for(
i=start_i;
i<=last_non_zero;
i++){
4097 int level_index, j, zero_distortion;
4099 int best_score=256*256*256*120;
4103 zero_distortion= dct_coeff*dct_coeff;
4105 for(level_index=0; level_index < coeff_count[
i]; level_index++){
4114 unquant_coeff= alevel*qmul + qadd;
4116 j =
s->c.idsp.idct_permutation[scantable[
i]];
4117 unquant_coeff = alevel *
matrix[j] * 8;
4119 j =
s->c.idsp.idct_permutation[scantable[
i]];
4120 if (
s->c.mb_intra) {
4121 unquant_coeff = (int)( alevel * mpeg2_qscale *
matrix[j]) >> 4;
4122 unquant_coeff = (unquant_coeff - 1) | 1;
4124 unquant_coeff = ((( alevel << 1) + 1) * mpeg2_qscale * ((int)
matrix[j])) >> 5;
4125 unquant_coeff = (unquant_coeff - 1) | 1;
4130 distortion= (unquant_coeff - dct_coeff) * (unquant_coeff - dct_coeff) - zero_distortion;
4132 if((
level&(~127)) == 0){
4133 for(j=survivor_count-1; j>=0; j--){
4134 int run=
i - survivor[j];
4136 score += score_tab[
i-
run];
4138 if(score < best_score){
4141 level_tab[
i+1]=
level-64;
4146 for(j=survivor_count-1; j>=0; j--){
4147 int run=
i - survivor[j];
4149 score += score_tab[
i-
run];
4150 if(score < last_score){
4153 last_level=
level-64;
4159 distortion += esc_length*lambda;
4160 for(j=survivor_count-1; j>=0; j--){
4161 int run=
i - survivor[j];
4162 int score= distortion + score_tab[
i-
run];
4164 if(score < best_score){
4167 level_tab[
i+1]=
level-64;
4172 for(j=survivor_count-1; j>=0; j--){
4173 int run=
i - survivor[j];
4174 int score= distortion + score_tab[
i-
run];
4175 if(score < last_score){
4178 last_level=
level-64;
4186 score_tab[
i+1]= best_score;
4189 if(last_non_zero <= 27){
4190 for(; survivor_count; survivor_count--){
4191 if(score_tab[ survivor[survivor_count-1] ] <= best_score)
4195 for(; survivor_count; survivor_count--){
4196 if(score_tab[ survivor[survivor_count-1] ] <= best_score + lambda)
4201 survivor[ survivor_count++ ]=
i+1;
4205 last_score= 256*256*256*120;
4206 for(
i= survivor[0];
i<=last_non_zero + 1;
i++){
4207 int score= score_tab[
i];
4209 score += lambda * 2;
4211 if(score < last_score){
4214 last_level= level_tab[
i];
4215 last_run= run_tab[
i];
4220 s->coded_score[n] = last_score;
4223 last_non_zero= last_i - 1;
4224 memset(
block + start_i, 0, (64-start_i)*
sizeof(int16_t));
4226 if(last_non_zero < start_i)
4227 return last_non_zero;
4229 if(last_non_zero == 0 && start_i == 0){
4231 int best_score=
dc *
dc;
4233 for(
i=0;
i<coeff_count[0];
i++){
4236 int unquant_coeff, score, distortion;
4239 unquant_coeff= (alevel*qmul + qadd)>>3;
4241 unquant_coeff = ((( alevel << 1) + 1) * mpeg2_qscale * ((int)
matrix[0])) >> 5;
4242 unquant_coeff = (unquant_coeff - 1) | 1;
4244 unquant_coeff = (unquant_coeff + 4) >> 3;
4245 unquant_coeff<<= 3 + 3;
4247 distortion= (unquant_coeff -
dc) * (unquant_coeff -
dc);
4250 else score= distortion + esc_length*lambda;
4252 if(score < best_score){
4254 best_level=
level - 64;
4257 block[0]= best_level;
4258 s->coded_score[n] = best_score -
dc*
dc;
4259 if(best_level == 0)
return -1;
4260 else return last_non_zero;
4266 block[ perm_scantable[last_non_zero] ]= last_level;
4269 for(;
i>start_i;
i -= run_tab[
i] + 1){
4270 block[ perm_scantable[
i-1] ]= level_tab[
i];
4273 return last_non_zero;
4288 if(
i==0)
s*= sqrt(0.5);
4289 if(j==0)
s*= sqrt(0.5);
4302 const uint8_t *scantable;
4303 const uint8_t *perm_scantable;
4309 int qmul, qadd, start_i, last_non_zero,
i,
dc;
4310 const uint8_t *length;
4311 const uint8_t *last_length;
4313 int rle_index,
run, q = 1, sum;
4315 if(
basis[0][0] == 0)
4320 if (
s->c.mb_intra) {
4321 scantable =
s->c.intra_scantable.scantable;
4322 perm_scantable =
s->c.intra_scantable.permutated;
4323 if (!
s->c.h263_aic) {
4325 q =
s->c.y_dc_scale;
4327 q =
s->c.c_dc_scale;
4340 if (n > 3 &&
s->intra_chroma_ac_vlc_length) {
4341 length =
s->intra_chroma_ac_vlc_length;
4342 last_length=
s->intra_chroma_ac_vlc_last_length;
4344 length =
s->intra_ac_vlc_length;
4345 last_length=
s->intra_ac_vlc_last_length;
4348 scantable =
s->c.inter_scantable.scantable;
4349 perm_scantable =
s->c.inter_scantable.permutated;
4352 length =
s->inter_ac_vlc_length;
4353 last_length=
s->inter_ac_vlc_last_length;
4355 last_non_zero =
s->c.block_last_index[n];
4358 for(
i=0;
i<64;
i++){
4363 for(
i=0;
i<64;
i++){
4369 w= 15 + (48*qns*one +
w/2)/
w;
4382 for(
i=start_i;
i<=last_non_zero;
i++){
4383 int j= perm_scantable[
i];
4390 run_tab[rle_index++]=
run;
4400 int best_score =
s->mpvencdsp.try_8x8basis(rem,
weight,
basis[0], 0);
4403 int run2, best_unquant_change=0, analyze_gradient;
4404 analyze_gradient = last_non_zero > 2 ||
s->quantizer_noise_shaping >= 3;
4406 if(analyze_gradient){
4407 for(
i=0;
i<64;
i++){
4417 int change, old_coeff;
4423 for(change=-1; change<=1; change+=2){
4424 int new_level=
level + change;
4425 int score, new_coeff;
4427 new_coeff= q*new_level;
4428 if(new_coeff >= 2048 || new_coeff < 0)
4431 score =
s->mpvencdsp.try_8x8basis(rem,
weight,
basis[0],
4432 new_coeff - old_coeff);
4433 if(score<best_score){
4436 best_change= change;
4437 best_unquant_change= new_coeff - old_coeff;
4444 run2= run_tab[rle_index++];
4448 for(
i=start_i;
i<64;
i++){
4449 int j= perm_scantable[
i];
4451 int change, old_coeff;
4453 if(
s->quantizer_noise_shaping < 3 &&
i > last_non_zero + 1)
4458 else old_coeff= qmul*
level + qadd;
4459 run2= run_tab[rle_index++];
4466 for(change=-1; change<=1; change+=2){
4467 int new_level=
level + change;
4468 int score, new_coeff, unquant_change;
4475 if(new_level<0) new_coeff= qmul*new_level - qadd;
4476 else new_coeff= qmul*new_level + qadd;
4477 if(new_coeff >= 2048 || new_coeff <= -2048)
4482 if(level < 63 && level > -63){
4483 if(
i < last_non_zero)
4493 if(analyze_gradient){
4494 int g= d1[ scantable[
i] ];
4495 if(
g && (
g^new_level) >= 0)
4499 if(
i < last_non_zero){
4500 int next_i=
i + run2 + 1;
4501 int next_level=
block[ perm_scantable[next_i] ] + 64;
4503 if(next_level&(~127))
4506 if(next_i < last_non_zero)
4526 if(
i < last_non_zero){
4527 int next_i=
i + run2 + 1;
4528 int next_level=
block[ perm_scantable[next_i] ] + 64;
4530 if(next_level&(~127))
4533 if(next_i < last_non_zero)
4552 unquant_change= new_coeff - old_coeff;
4553 av_assert2((score < 100*lambda && score > -100*lambda) || lambda==0);
4555 score +=
s->mpvencdsp.try_8x8basis(rem,
weight,
basis[j],
4557 if(score<best_score){
4560 best_change= change;
4561 best_unquant_change= unquant_change;
4565 prev_level=
level + 64;
4566 if(prev_level&(~127))
4576 int j= perm_scantable[ best_coeff ];
4578 block[j] += best_change;
4580 if(best_coeff > last_non_zero){
4581 last_non_zero= best_coeff;
4584 for(; last_non_zero>=start_i; last_non_zero--){
4585 if(
block[perm_scantable[last_non_zero]])
4592 for(
i=start_i;
i<=last_non_zero;
i++){
4593 int j= perm_scantable[
i];
4597 run_tab[rle_index++]=
run;
4604 s->mpvencdsp.add_8x8basis(rem,
basis[j], best_unquant_change);
4610 return last_non_zero;
4625 const uint8_t *scantable,
int last)
4636 for (
i = 0;
i <= last;
i++) {
4637 const int j = scantable[
i];
4642 for (
i = 0;
i <= last;
i++) {
4643 const int j = scantable[
i];
4644 const int perm_j = permutation[j];
4650 int16_t *
block,
int n,
4653 int i, last_non_zero, q, start_i;
4655 const uint8_t *scantable;
4658 unsigned int threshold1, threshold2;
4664 if (
s->c.mb_intra) {
4665 scantable =
s->c.intra_scantable.scantable;
4666 if (!
s->c.h263_aic) {
4668 q =
s->c.y_dc_scale;
4670 q =
s->c.c_dc_scale;
4680 qmat = n < 4 ?
s->q_intra_matrix[qscale] :
s->q_chroma_intra_matrix[qscale];
4683 scantable =
s->c.inter_scantable.scantable;
4686 qmat =
s->q_inter_matrix[qscale];
4690 threshold2= (threshold1<<1);
4691 for(
i=63;
i>=start_i;
i--) {
4692 const int j = scantable[
i];
4695 if(((uint64_t)(
level+threshold1))>threshold2){
4702 for(
i=start_i;
i<=last_non_zero;
i++) {
4703 const int j = scantable[
i];
4708 if(((uint64_t)(
level+threshold1))>threshold2){
4726 scantable, last_non_zero);
4728 return last_non_zero;
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
static int encode_frame(AVCodecContext *c, const AVFrame *frame, AVPacket *pkt)
static int dct_quantize_trellis_c(MPVEncContext *const s, int16_t *block, int n, int qscale, int *overflow)
static void put_dct(MPVEncContext *const s, int16_t *block, int i, uint8_t *dest, int line_size, int qscale)
void ff_fix_long_p_mvs(MPVEncContext *const s, int type)
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
#define FF_MATRIX_TYPE_INTRA
Check if the elements of codec context matrices (intra_matrix, inter_matrix or chroma_intra_matrix) a...
int ff_encode_reordered_opaque(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame)
Propagate user opaque values from the frame to avctx/pkt as needed.
int me_pre
prepass for motion estimation
void ff_fix_long_mvs(MPVEncContext *const s, uint8_t *field_select_table, int field_select, int16_t(*mv_table)[2], int f_code, int type, int truncate)
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
const uint8_t * fcode_tab
smallest fcode needed for each MV
int fixed_qscale
fixed qscale if non zero
#define CANDIDATE_MB_TYPE_BIDIR
static void encode_mb_hq(MPVEncContext *const s, MBBackup *const backup, MBBackup *const best, PutBitContext pb[2], PutBitContext pb2[2], PutBitContext tex_pb[2], int *dmin, int *next_block, int motion_x, int motion_y)
me_cmp_func frame_skip_cmp_fn
static void dct_single_coeff_elimination(MPVEncContext *const s, int n, int threshold)
#define MV_TYPE_16X16
1 vector for the whole mb
#define AV_LOG_WARNING
Something somehow does not look correct.
static av_cold void init_unquantize(MPVEncContext *const s2, AVCodecContext *avctx)
const AVClass ff_mpv_enc_class
static void encode_mb(MPVEncContext *const s, int motion_x, int motion_y)
void ff_estimate_b_frame_motion(MPVEncContext *const s, int mb_x, int mb_y)
int avcodec_receive_packet(AVCodecContext *avctx, AVPacket *avpkt)
Read encoded data from the encoder.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
void ff_mpv_motion(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int dir, uint8_t *const *ref_picture, const op_pixels_func(*pix_op)[4], const qpel_mc_func(*qpix_op)[16])
static void init_qscale_tab(MPVEncContext *const s)
init s->c.cur_pic.qscale_table from s->lambda_table
av_cold int ff_mpv_init_duplicate_contexts(MpegEncContext *s)
Initialize an MpegEncContext's thread contexts.
static void update_noise_reduction(MPVMainEncContext *const m)
char * dct_error_sum_base
backs dct_error_sum
av_cold int ff_me_init(MotionEstContext *c, AVCodecContext *avctx, const MECmpContext *mecc, int mpvenc)
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
int64_t rc_min_rate
minimum bitrate
static void set_frame_distances(MPVEncContext *const s)
static void frame_start(MPVMainEncContext *const m)
#define AVERROR_EOF
End of file.
void ff_speedhq_end_slice(MPVEncContext *const s)
static int estimate_qp(MPVMainEncContext *const m, int dry_run)
av_cold void ff_msmpeg4_encode_init(MPVMainEncContext *const m)
MpegEncContext c
the common base context
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
av_cold void ff_dct_encode_init(MPVEncContext *const s)
void ff_me_init_pic(MPVEncContext *const s)
static int16_t basis[64][64]
uint16_t * intra_matrix
custom intra quantization matrix Must be allocated with the av_malloc() family of functions,...
static int estimate_best_b_count(MPVMainEncContext *const m)
int last_lambda_for[5]
last lambda for a specific pict type
static const uint8_t mv_bits[2][16][10]
static int estimate_motion_thread(AVCodecContext *c, void *arg)
void ff_clean_h263_qscales(MPVEncContext *s)
float lumi_masking
luminance masking (0-> disabled)
#define MV_DIRECT
bidirectional mode where the difference equals the MV of the last P/S/I-Frame (MPEG-4)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static int sse(const MPVEncContext *const s, const uint8_t *src1, const uint8_t *src2, int w, int h, int stride)
#define CANDIDATE_MB_TYPE_INTER
int ff_update_duplicate_context(MpegEncContext *dst, const MpegEncContext *src)
void(* dct_unquantize_mpeg1_intra)(struct MpegEncContext *s, int16_t *block, int n, int qscale)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define INTERLACED_DCT(s)
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
int capabilities
Codec capabilities.
int av_packet_shrink_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Shrink the already allocated side data buffer.
static int put_bytes_count(const PutBitContext *s, int round_up)
unsigned int lambda
Lagrange multiplier used in rate distortion.
int64_t dts_delta
pts difference between the first and second input frame, used for calculating dts of the first frame ...
const uint8_t ff_mpeg2_non_linear_qscale[32]
static void write_slice_end(MPVEncContext *const s)
#define AV_LOG_VERBOSE
Detailed information.
void ff_init_block_index(MpegEncContext *s)
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
#define FF_MPV_FLAG_SKIP_RD
const uint8_t ff_mpeg12_dc_scale_table[4][32]
struct AVCodecContext * avctx
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
static double sqr(double in)
#define AV_CODEC_FLAG_PSNR
error[?] variables will be set during encoding.
static int pre_estimate_motion_thread(AVCodecContext *c, void *arg)
static void get_visual_weight(int16_t *weight, const uint8_t *ptr, int stride)
#define COPY_CONTEXT(BEFORE, AFTER, DST_TYPE, SRC_TYPE)
int mb_decision
macroblock decision mode
int qmax
maximum quantizer
#define AV_CODEC_FLAG_INTERLACED_ME
interlaced motion estimation
int64_t mb_var_sum
sum of MB variance for current frame
#define AV_CODEC_FLAG_4MV
4 MV per MB allowed / advanced prediction for H.263.
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
int mb_cmp
macroblock comparison function (not supported yet)
void av_packet_free(AVPacket **pkt)
Free the packet, if the packet is reference counted, it will be unreferenced first.
int(* encode_picture_header)(struct MPVMainEncContext *m)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about quality
#define CANDIDATE_MB_TYPE_BACKWARD_I
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int(* sum_abs_dctelem)(const int16_t *block)
static void update_mb_info(MPVEncContext *const s, int startcode)
int coded_picture_number
used to set pic->coded_picture_number
int64_t av_gcd(int64_t a, int64_t b)
Compute the greatest common divisor of two integer operands.
static int set_bframe_chain_length(MPVMainEncContext *const m)
Determines whether an input picture is discarded or not and if not determines the length of the next ...
#define FF_MPV_COMMON_MOTION_EST_OPTS
static void mpv_reconstruct_mb(MPVEncContext *const s, int16_t block[12][64])
Performs dequantization and IDCT (if necessary)
int ff_mpv_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic_arg, int *got_packet)
#define FF_MPV_COMMON_OPTS
void ff_copy_bits(PutBitContext *pb, const uint8_t *src, int length)
Copy the content of src to the bitstream.
static av_cold int init_slice_buffers(MPVMainEncContext *const m)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t mx
int av_packet_add_side_data(AVPacket *pkt, enum AVPacketSideDataType type, uint8_t *data, size_t size)
Wrap an existing array as a packet side data.
int ff_match_2uint16(const uint16_t(*tab)[2], int size, int a, int b)
Return the index into tab at which {a,b} match elements {[0],[1]} of tab.
const struct AVCodec * codec
int16_t * ff_h263_pred_motion(MpegEncContext *s, int block, int dir, int *px, int *py)
int ff_vbv_update(MPVMainEncContext *m, int frame_size)
static const struct twinvq_data tab
ptrdiff_t linesize
line size, in bytes, may be different from width
void ff_h263_encode_init(MPVMainEncContext *m)
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
int flags
AV_CODEC_FLAG_*.
#define CANDIDATE_MB_TYPE_SKIPPED
void(* dct_unquantize_h263_intra)(struct MpegEncContext *s, int16_t *block, int n, int qscale)
const h264_weight_func weight
MPVPicture * input_picture[MPVENC_MAX_B_FRAMES+1]
next pictures in display order
int bit_rate_tolerance
number of bits the bitstream is allowed to diverge from the reference.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_CODEC_FLAG_LOW_DELAY
Force low delay.
#define FF_MPV_FLAG_CBP_RD
static int get_intra_count(MPVEncContext *const s, const uint8_t *src, const uint8_t *ref, int stride)
void ff_mpeg4_init_partitions(MPVEncContext *const s)
static int sse_mb(MPVEncContext *const s)
int ff_encode_add_stats_side_data(AVPacket *pkt, int quality, const int64_t error[], int error_count, enum AVPictureType pict_type)
#define AV_CODEC_FLAG_LOOP_FILTER
loop filter.
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
static void ff_mpeg1_encode_init(MPVEncContext *s)
static av_cold int init_matrices(MPVMainEncContext *const m, AVCodecContext *avctx)
static int put_bytes_left(const PutBitContext *s, int round_up)
#define AV_CODEC_FLAG_INTERLACED_DCT
Use interlaced DCT.
#define CANDIDATE_MB_TYPE_DIRECT
#define CANDIDATE_MB_TYPE_INTER_I
static int skip_check(MPVMainEncContext *const m, const MPVPicture *p, const MPVPicture *ref)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int stuffing_bits
bits used for stuffing
int picture_in_gop_number
0-> first pic in gop, ...
int num_entries
number of RateControlEntries
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
void ff_h263_encode_gob_header(MPVEncContext *s, int mb_line)
int(* me_cmp_func)(MPVEncContext *c, const uint8_t *blk1, const uint8_t *blk2, ptrdiff_t stride, int h)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static uint8_t default_fcode_tab[MAX_MV *2+1]
int16_t(* ac_val)[16]
used for H.263 AIC, MPEG-4 AC prediction
int ff_mpeg4_set_direct_mv(MpegEncContext *s, int mx, int my)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
static void build_basis(uint8_t *perm)
int has_b_frames
Size of the frame reordering buffer in the decoder.
AVCodecContext * avcodec_alloc_context3(const AVCodec *codec)
Allocate an AVCodecContext and set its fields to default values.
AVFrame * tmp_frames[MPVENC_MAX_B_FRAMES+2]
temporary frames used by b_frame_strategy = 2
static int get_sae(const uint8_t *src, int ref, int stride)
int ff_rv10_encode_picture_header(MPVMainEncContext *const m)
static void rebase_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Rebase the bit writer onto a reallocated buffer.
#define AV_CEIL_RSHIFT(a, b)
MPVPicture * reordered_input_picture[MPVENC_MAX_B_FRAMES+1]
next pictures in coded order
int intra_only
if true, only intra pictures are generated
int64_t mc_mb_var_sum
motion compensated MB variance for current frame
static void merge_context_after_me(MPVEncContext *const dst, MPVEncContext *const src)
void ff_mpeg4_stuffing(PutBitContext *pbc)
add MPEG-4 stuffing bits (01...1)
RateControlContext rc_context
contains stuff only accessed in ratecontrol.c
void(* dct_unquantize_mpeg2_intra)(struct MpegEncContext *s, int16_t *block, int n, int qscale)
static double av_q2d(AVRational a)
Convert an AVRational to a double.
static const uint8_t *const ff_mpeg1_dc_scale_table
#define LOCAL_ALIGNED_16(t, v,...)
PutBitContext pb
bit output
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void ff_write_quant_matrix(PutBitContext *pb, uint16_t *matrix)
int max_b_frames
max number of B-frames
int ff_pre_estimate_p_frame_motion(MPVEncContext *const s, int mb_x, int mb_y)
void ff_clean_mpeg4_qscales(MPVEncContext *const s)
modify mb_type & qscale so that encoding is actually possible in MPEG-4
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
int64_t rc_max_rate
maximum bitrate
void ff_block_permute(int16_t *block, const uint8_t *permutation, const uint8_t *scantable, int last)
Permute an 8x8 block according to permutation.
uint64_t error[AV_NUM_DATA_POINTERS]
error
This structure describes the bitrate properties of an encoded bitstream.
static int ff_speedhq_mb_y_order_to_mb(int mb_y_order, int mb_height, int *first_in_slice)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define CANDIDATE_MB_TYPE_FORWARD
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t my
float p_masking
p block masking (0-> disabled)
static int mb_var_thread(AVCodecContext *c, void *arg)
static av_cold void mpv_encode_init_static(void)
av_cold void ff_mpv_common_end(MpegEncContext *s)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
void ff_mpv_unref_picture(MPVWorkPicture *pic)
int rc_buffer_size
decoder bitstream buffer size
#define LIBAVUTIL_VERSION_INT
#define CANDIDATE_MB_TYPE_FORWARD_I
Describe the class of an AVClass context structure.
int16_t(* block)[64]
points into blocks below
#define PTRDIFF_SPECIFIER
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static int bias(int x, int c)
av_cold void ff_mpv_idct_init(MpegEncContext *s)
av_cold void ff_mpv_common_defaults(MpegEncContext *s)
Set the given MpegEncContext to common defaults (same for encoding and decoding).
void avcodec_free_context(AVCodecContext **avctx)
Free the codec context and everything associated with it and write NULL to the provided pointer.
#define av_unreachable(msg)
Asserts that are used as compiler optimization hints depending upon ASSERT_LEVEL and NBDEBUG.
float ff_rate_estimate_qscale(MPVMainEncContext *const m, int dry_run)
#define CANDIDATE_MB_TYPE_BACKWARD
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
int64_t bit_rate
the average bitrate
int display_picture_number
#define ROUNDED_DIV(a, b)
void ff_faandct(int16_t *data)
uint16_t inter_matrix[64]
const char * av_default_item_name(void *ptr)
Return the context name.
@ AV_PICTURE_TYPE_I
Intra.
unsigned int lambda2
(lambda*lambda) >> FF_LAMBDA_SHIFT
static av_cold int me_cmp_init(MPVMainEncContext *const m, AVCodecContext *avctx)
static int select_input_picture(MPVMainEncContext *const m)
void ff_set_qscale(MpegEncContext *s, int qscale)
set qscale and update qscale dependent variables.
static int dct_error(const struct algo *dct, int test, int is_idct, int speed, const int bits)
#define AV_CODEC_FLAG_AC_PRED
H.263 advanced intra coding / MPEG-4 AC prediction.
int ildct_cmp
interlaced DCT comparison function
void * av_refstruct_pool_get(AVRefStructPool *pool)
Get an object from the pool, reusing an old one from the pool when available.
av_cold int ff_mpv_encode_end(AVCodecContext *avctx)
#define FF_MB_DECISION_SIMPLE
uses mb_cmp
int ff_mpv_reallocate_putbitbuffer(MPVEncContext *const s, size_t threshold, size_t size_increase)
void ff_h261_reorder_mb_index(MPVEncContext *const s)
int attribute_align_arg avcodec_open2(AVCodecContext *avctx, const AVCodec *codec, AVDictionary **options)
Initialize the AVCodecContext to use the given AVCodec.
#define ff_mpv_unquantize_init(s, bitexact, q_scale_type)
static void add_dequant_dct(MPVEncContext *const s, int16_t *block, int i, uint8_t *dest, int line_size, int qscale)
int trellis
trellis RD quantization
void ff_mpeg4_encode_video_packet_header(MPVEncContext *const s)
void(* op_pixels_func)(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int h)
Average and put pixel Widths can be 16, 8, 4 or 2.
static void update_duplicate_context_after_me(MPVEncContext *const dst, const MPVEncContext *const src)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
float temporal_cplx_masking
temporary complexity masking (0-> disabled)
static int load_input_picture(MPVMainEncContext *const m, const AVFrame *pic_arg)
static void set_put_bits_buffer_size(PutBitContext *s, int size)
Change the end of the buffer.
void ff_set_mpeg4_time(MPVEncContext *const s)
AVRational time_base
This is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented.
int ff_encode_alloc_frame(AVCodecContext *avctx, AVFrame *frame)
Allocate buffers for a frame.
#define FF_DEBUG_DCT_COEFF
static void ff_h263_clean_intra_table_entries(MpegEncContext *s, int xy)
char * stats_out
pass1 encoding statistics output buffer
#define AV_CODEC_FLAG_QPEL
Use qpel MC.
enum AVPictureType pict_type
Picture type of the frame.
static void clip_coeffs(const MPVEncContext *const s, int16_t block[], int last_index)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
void ff_mpeg4_clean_buffers(MpegEncContext *s)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
int vbv_delay_pos
offset of vbv_delay in the bitstream
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
uint16_t intra_matrix[64]
matrix transmitted in the bitstream
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
static void ff_update_block_index(MpegEncContext *s, int bits_per_raw_sample, int lowres, int chroma_x_shift)
void ff_mpeg1_clean_buffers(MpegEncContext *s)
#define CANDIDATE_MB_TYPE_DIRECT0
const int16_t ff_mpeg4_default_intra_matrix[64]
#define CANDIDATE_MB_TYPE_INTRA
#define AV_NOPTS_VALUE
Undefined timestamp value.
static const AVOption mpv_generic_options[]
int frame_bits
bits used for the current frame
uint8_t * byte_buffer
temporary buffer used for encoders to store their bitstream
#define FF_MPV_FLAG_QP_RD
static int encode_picture(MPVMainEncContext *const s, const AVPacket *pkt)
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
int64_t min_bitrate
Minimum bitrate of the stream, in bits per second.
const uint16_t ff_mpeg1_default_intra_matrix[256]
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
av_cold int ff_set_cmp(const MECmpContext *c, me_cmp_func *cmp, int type, int mpvenc)
Fill the function pointer array cmp[6] with me_cmp_funcs from c based upon type.
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
#define FF_COMPLIANCE_NORMAL
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
const int16_t ff_mpeg4_default_non_intra_matrix[64]
#define ALLOCZ_ARRAYS(p, mult, numb)
int input_picture_number
used to set pic->display_picture_number
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
void ff_mpeg1_encode_slice_header(MPVEncContext *s)
void(* dct_unquantize_mpeg2_inter)(struct MpegEncContext *s, int16_t *block, int n, int qscale)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define MV_TYPE_FIELD
2 vectors, one per field
int flags
A combination of AV_PKT_FLAG values.
AVPacket * av_packet_alloc(void)
Allocate an AVPacket and set its fields to default values.
int64_t avg_bitrate
Average bitrate of the stream, in bits per second.
unsigned int byte_buffer_size
uint8_t * scratchpad_buf
the other *_scratchpad point into this buffer
int me_penalty_compensation
#define UNI_AC_ENC_INDEX(run, level)
#define CANDIDATE_MB_TYPE_BIDIR_I
#define AV_LOG_INFO
Standard information.
#define CANDIDATE_MB_TYPE_INTER4V
void av_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
int ff_mjpeg_add_icc_profile_size(AVCodecContext *avctx, const AVFrame *frame, size_t *max_pkt_size)
uint64_t vbv_delay
The delay between the time the packet this structure is associated with is received and the time when...
static int get_bits_diff(MPVEncContext *s)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
@ AV_PKT_DATA_CPB_PROPERTIES
This side data corresponds to the AVCPBProperties struct.
@ AV_PKT_DATA_H263_MB_INFO
An AV_PKT_DATA_H263_MB_INFO side data packet contains a number of structures with info about macroblo...
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
void(* dct_unquantize_h263_inter)(struct MpegEncContext *s, int16_t *block, int n, int qscale)
static int put_bits_count(PutBitContext *s)
int ff_rv20_encode_picture_header(MPVMainEncContext *m)
static int encode_thread(AVCodecContext *c, void *arg)
int16_t(* mv_table_base)[2]
void ff_jpeg_fdct_islow_8(int16_t *data)
av_cold void ff_fdctdsp_init(FDCTDSPContext *c, AVCodecContext *avctx)
#define FF_MATRIX_TYPE_CHROMA_INTRA
void ff_h263_update_mb(MPVEncContext *s)
int intra_dc_precision
precision of the intra DC coefficient - 8
uint16_t(* dct_offset)[64]
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
int64_t max_bitrate
Maximum bitrate of the stream, in bits per second.
av_cold int ff_rate_control_init(MPVMainEncContext *const m)
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
#define MPVENC_MAX_B_FRAMES
void ff_jpeg_fdct_islow_10(int16_t *data)
static av_cold void mpv_encode_defaults(MPVMainEncContext *const m)
Set the given MPVEncContext to defaults for encoding.
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
int next_lambda
next lambda used for retrying to encode a frame
const uint16_t ff_h263_format[8][2]
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
void ff_write_pass1_stats(MPVMainEncContext *const m)
void ff_msmpeg4_encode_ext_header(MPVEncContext *const s)
const EXTERN uint32_t ff_square_tab[512]
int last_non_b_pict_type
used for MPEG-4 gmc B-frames & ratecontrol
int avcodec_send_frame(AVCodecContext *avctx, const AVFrame *frame)
Supply a raw video or audio frame to the encoder.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
static int prepare_picture(MPVEncContext *const s, AVFrame *f, const AVFrame *props_frame)
Allocates new buffers for an AVFrame and copies the properties from another AVFrame.
double buffer_index
amount of bits in the video/audio buffer
void ff_get_2pass_fcode(MPVMainEncContext *const m)
static void frame_end(MPVMainEncContext *const m)
static av_always_inline void encode_mb_internal(MPVEncContext *const s, int motion_x, int motion_y, int mb_block_height, int mb_block_width, int mb_block_count, int chroma_x_shift, int chroma_y_shift, int chroma_format)
static av_cold int init_buffers(MPVMainEncContext *const m)
av_cold void ff_pixblockdsp_init(PixblockDSPContext *c, int bits_per_raw_sample)
const uint8_t ff_zigzag_direct[64]
#define AV_CODEC_FLAG_CLOSED_GOP
void ff_h263_mpeg4_reset_dc(MPVEncContext *s)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
const uint16_t ff_mpeg1_default_non_intra_matrix[64]
int64_t buffer_size
The size of the buffer to which the ratecontrol is applied, in bits.
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
void ff_fdct_ifast(int16_t *data)
const uint16_t ff_inv_aanscales[64]
void ff_h263_loop_filter(MpegEncContext *s)
void ff_convert_matrix(MPVEncContext *const s, int(*qmat)[64], uint16_t(*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax, int intra)
#define AV_INPUT_BUFFER_PADDING_SIZE
int64_t reordered_pts
reordered pts to be used as dts for the next output frame when there's a delay
uint8_t * scratchpad
data area for the ME algo, so that the ME does not need to malloc/free.
float dark_masking
darkness masking (0-> disabled)
main external API structure.
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Allocate new information of a packet.
int qmin
minimum quantizer
void(* dct_unquantize_mpeg1_inter)(struct MpegEncContext *s, int16_t *block, int n, int qscale)
int ff_mjpeg_encode_stuffing(MPVEncContext *const s)
Writes the complete JPEG frame when optimal huffman tables are enabled, otherwise writes the stuffing...
float spatial_cplx_masking
spatial complexity masking (0-> disabled)
static int ref[MAX_W *MAX_W]
int ff_mpv_pic_check_linesize(void *logctx, const AVFrame *f, ptrdiff_t *linesizep, ptrdiff_t *uvlinesizep)
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static float mean(const float *input, int size)
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
#define FF_MB_DECISION_RD
rate distortion
void ff_mpv_replace_picture(MPVWorkPicture *dst, const MPVWorkPicture *src)
void ff_estimate_p_frame_motion(MPVEncContext *const s, int mb_x, int mb_y)
@ AV_PICTURE_TYPE_P
Predicted.
#define AVERROR_ENCODER_NOT_FOUND
Encoder not found.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
int max_b_frames
maximum number of B-frames between non-B-frames Note: The output will be delayed by max_b_frames+1 re...
Undefined Behavior In the C some operations are like signed integer overflow
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
static void denoise_dct(MPVEncContext *const s, int16_t block[])
static int dct_quantize_refine(MPVEncContext *const s, int16_t *block, int16_t *weight, int16_t *orig, int n, int qscale)
void(* fdct)(int16_t *block)
av_cold int ff_mpv_encode_init(AVCodecContext *avctx)
float rc_max_available_vbv_use
Ratecontrol attempt to use, at maximum, of what can be used without an underflow.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
void ff_mpeg4_merge_partitions(MPVEncContext *const s)
static void merge_context_after_encode(MPVEncContext *const dst, MPVEncContext *const src)
static void av_refstruct_pool_uninit(AVRefStructPool **poolp)
Mark the pool as being available for freeing.
static void scale(int *out, const int *in, const int w, const int h, const int shift)
int slices
Number of slices.
#define FF_MB_DECISION_BITS
chooses the one which needs the fewest bits
This structure stores compressed data.
uint16_t * inter_matrix
custom inter quantization matrix Must be allocated with the av_malloc() family of functions,...
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
int scenechange_threshold
void ff_dct_encode_init_x86(MPVEncContext *s)
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const double coeff[2][5]
The exact code depends on how similar the blocks are and how related they are to the block
void ff_mjpeg_encode_picture_trailer(PutBitContext *pb, int header_bits)
int64_t user_specified_pts
last non-zero pts from user-supplied AVFrame
AVCPBProperties * ff_encode_add_cpb_side_data(AVCodecContext *avctx)
Add a CPB properties side data to an encoding context.
static int dct_quantize_c(MPVEncContext *const s, int16_t *block, int n, int qscale, int *overflow)
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
#define FF_MPV_FLAG_STRICT_GOP
int start_mb_y
start mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y)
static const uint8_t sp5x_qscale_five_quant_table[][64]
@ AV_PICTURE_TYPE_S
S(GMC)-VOP MPEG-4.
@ AV_CODEC_ID_MPEG2VIDEO
preferred ID for MPEG-1/2 video decoding
int ff_mpv_alloc_pic_accessories(AVCodecContext *avctx, MPVWorkPicture *wpic, ScratchpadContext *sc, BufferPoolContext *pools, int mb_height)
Allocate an MPVPicture's accessories (but not the AVFrame's buffer itself) and set the MPVWorkPicture...
static void update_qscale(MPVMainEncContext *const m)
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
MPVEncContext s
The main slicecontext.
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel.
static void write_mb_info(MPVEncContext *const s)
int16_t * dc_val
used for H.263 AIC/MPEG-4 DC prediction and ER
av_cold AVRefStructPool * ff_mpv_alloc_pic_pool(int init_progress)
Allocate a pool of MPVPictures.
const uint16_t ff_aanscales[64]
AVCPBProperties * av_cpb_properties_alloc(size_t *size)
Allocate a CPB properties structure and initialize its fields to default values.
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
int ff_check_codec_matrices(AVCodecContext *avctx, unsigned types, uint16_t min, uint16_t max)
#define FF_MATRIX_TYPE_INTER
av_cold void ff_rate_control_uninit(RateControlContext *rcc)
int ff_get_best_fcode(MPVMainEncContext *const m, const int16_t(*mv_table)[2], int type)